八年级数学下册知识点与典型例题.doc
《八年级数学下册知识点与典型例题.doc》由会员分享,可在线阅读,更多相关《八年级数学下册知识点与典型例题.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上八年级数学下册知识点复习 第十六章 分式 考点一、分式定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。 分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 题型一:考查分式的定义下列代数式中:,是分式的有:.题型二:考查分式有意义的条件:当有何值时,下列分式有意义(1)(2)(3)(4)(5)答:(1) (2) (3) (4) (5)题型三:考查分式的值为0的条件:当取何值时,下列分式的值为0. (1)(2)(3)答(1) (2) (3) 题型四:考查分式的值为正、负的条件:(1)当为何值时,分式 为正; (2)当为何值时,分式 为负
2、; (3)当为何值时,分式 为非负数.练习:(1)已知分式的值是零,那么x的值是()A-1B0C1D(2) 当x_时,分式没有意义考点二:分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。1分式的基本性质:2分式的变号法则:题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)(2)题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)(2)(3)题型三:化简求值题【例3】已知:,求的值.提示:整体代入,转化出.【例4】已知:,求的值.【例5】若,求的值.考点三:分式的运算1确定最简公
3、分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母因式取各分母所有字母的最高次幂.2 确定最大公因式的方法 最大公因式的系数取分子、分母系数的最大公约数;取分子、分母相同的字母因式的最低次幂.题型一:分式的混合运算1、计算的结果是_2、计算3、计算题型二:化简求值题先化简后求值(1)已知:,求分子的值;(2)已知:,求的值;题型三:求待定字母的值【1】若关于的分式方程有增根,求的值.【2】若分式方程的解是正数,求的取值范围. 提示:且,且.【3】若 ,试求A、B的值.题型四:指数幂运算(1)下列各式中计算正确的是 (2)注意: 分式的通分和约分:关键先是分解因式 分式的运
4、算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 分式乘方法则:分式乘方要把分子、分母分别乘方。 分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减 混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。 任何一个不等于零的数的零次幂等于1,=1(a;正整数指数幂运算性质(请同学们自己复习)也可以推广到整数指数幂特别是一个整数的-n次幂等于它的n次幂的倒数,考点四:分式方程:含分式,并且分母中含未知数的方程分式方程。 解分式方
5、程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。 解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为,这样就产生了增根,因此分式方程一定要验根。 解分式方程的步骤: (1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根 增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。 分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。 列方程应用题的步骤是什么?(1)审(作题时不写出);(2)设;(
6、3)列;(4)解;(5)验 (6)答 应用题有几种类型基本上有五种:(1)行程问题:基本公式:路程=速度时间而行程问题中又分相遇问题、追及问题(2)数字问题在数字问题中要掌握十进制数的表示法(3)工程问题基本公式:工作量=工时工效(4)顺水逆水问题v顺水=v静水+v水v逆水=v静水-v水(5) 盈利问题 基本公式:利润(售价进价)件数 利润率1、解方程2、某市今年1月1日起调整居民用水价格,每立方米水费上涨25,小明家去年12月份的水费是18元,而今年5月份的水费是36元已知小明家今年5月份的用水量比去年12月份多6立方米,求该市今年居民用水的价格3、某一工程队,在工程招标时,接到甲乙工程队的
7、投标书,每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书预算,可有三种施工方案:(1)甲队单独完成此项工程刚好如期完工。(2)乙队单独完成此项工程要比规定工期多用5天。(3)若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工。问哪一种施工方案最省工程款?4、一辆汽车开往距离出发地180千米的目的地,出发后第1小时内按原计划的速度行使,1小时后加速为原来速度的1.5倍,并比原计划提前40分到达目的地,求前1小时的平均行使速度。考点五.科学记数法:把一个数表示成的形式(其中a,n是整数)的记数方法叫做科学记数法 用科学记数法表示绝对值大于
8、10的n位整数时,其中10的指数是整数位数减1用科学记数法表示绝对值小于1的正小数时,其中10的负指数是第一个非0数字前面0的个数(包括小数点前面的一个0) 第十七章反比例函数 1.定义:形如y=k/x(k为常数,k0)的函数称为反比例函数。 2.图像:反比例函数的图像属于双曲线。 3.性质:当k0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。 4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。 考点一:反比例函数定义1、反比例函数的判定:
9、下列函数中,是的反比例函数的是 DA B. C. D.2、K值确定:已知点A(-1,5)在反比例函数的图象上,则该函数的解析式为(C ) A: B: C: D:反比例函数中,比例系数k=已知是反比例函数,则=1.已知y2与x成反比例,当x=3时,y=1,则y与x的函数关系式为 .已知y=y1+y2,y1与x+1成正比例,y2与x+1成反比例,当x=0时y=-5,当x=2时,y=-7(1)求y与x之间的函数关系式(2)当x=-2时,求y的值3、点与解析式的关系:见考点3第题第3问考点二:反比例函数图象与性质 (1)反比例函数y=的图象位于 A、第一、二象限 B、第一、三象限 C、第二、三象限 D
10、、第二、四象限(2)已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是(D)haOhaOhaOhaO(3)已知反比例函数y=的图象的一支在第一象限。(1)图象的另一支在哪个象限,常数m的取值是什么?(2)在这个函数图象的某一支上任取点A(a,b)和B(a/,b/),如果b b/,那么a 与a/有怎么样的大小关系?(4)、已知关于x的函数和(k0),它们在同一坐标系内的图象大致是( ) (5)已知反比例函数的图象上有两点、且,那么下列结论正确的是( )A. B. C. D与之间的大小关系不能确定Ex:反比例函数图象上有三个点(x1,y1)(x2,y2)(x3,y3)其中x1x2
11、0y2 时x的取值范围是 5、如图,已知反比例函数和一次函数y2=ax+1的图象相交于第一象限内的点A,且点A的横坐标为1,过点A作AB垂直x轴于点B,SAOB=1求反比例函数与一次函数的解析式若一次函数y2=ax+1的图象与 x轴交于点C,求ACO的度数结合图象直接写出当y1y20时x的取值范围。6.为了杀灭空气中的病菌,某学校对教室采用了熏毒法进行消毒,已知药物燃烧时,室内每立方米空气中含药量y(mg)与时间x(min)成正比例;药物燃烧后, y与x成反比例,请根据下图所提供的信息,回答下列问题。 (1)药物 分钟后燃毕;此时空气中每立方米的含药量是 mg. (2)药物燃烧时,y关于x的函
12、数式为 ,自变量的取值范围是_.(3)药物燃烧后,y关于x的函数式为 ,自变量的取值范围是_. (4)研究表明,当空气中每立方米含药量低于1.5mg时,学生方可安全进入教室。从药物燃烧开始,有位同学要回教室取东西,何时进入教室是安全的?请你给他合理的建议。第十八章勾股定理 基本内容:1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么 2.勾股定理逆定理:如果三角形三边长a,b,c满足。,那么这个三角形是直角三角形。 3.经过证明被确认正确的命题叫做定理。 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股
13、定理逆定理)考点分析:考点一:利用求未知边。如在一直角三角形中有两边长分别是3、4,则其第三边长为5或(注意分类讨论) ;印度数学家拜斯迦罗(公元11141185年)的著作中,有个有趣的“荷花问题”,是以诗歌的形式出现的:湖静浪平六月天,荷花半尺出水面;忽来一阵狂风急,吹倒花儿水中偃.x2X+0.5x湖面之上不复见,入秋渔翁始发现;残花离根二尺遥,试问水深尺若干?问题:这是一道数学诗,你能读懂诗意,求出水深是多少尺吗?分析:设水深为x尺,则荷花高为(x+0.5)尺,如图形成直角三角形由勾股定理可列方程:,解之:x=3.75一棵大树离地面9米高处折断,树顶落在离树根底部12米远处,求大树折断前的
14、高度?答24米 考点二:直角三角形的判定问题1、已知:在ABC中,A、B、C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c。试判断ABC的形状。分析:移项,配成三个完全平方;三个非负数的和为0,则都为0;已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形。2、已知:在ABC中,A、B、C的对边分别是a、b、c,a=n21,b=2n,c=n21(n1)求证:C=90。分析:运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:先判断那条边最大。分别用代数方法计算出a2+b2和c2的值。判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相
15、等,则不是直角三角形。要证C=90,只要证ABC是直角三角形,并且c边最大。根据勾股定理的逆定理只要证明a2+b2=c2即可。由于a2+b2= (n21)2(2n)2=n42n21,c2=(n21)2= n42n21,从而a2+b2=c2,故命题获证。3、已知:如图,在ABC中,CD是AB边上的高,且CD2=ADBD。求证:ABC是直角三角形。 分析:AC2=AD2+CD2,BC2=CD2+BD2AC2+BC2=AD2+2CD2+BD2=AD2+2ADBD+BD2=(AD+BD)2=AB2练习:1、若ABC的三边a、b、c,满足(ab)(a2b2c2)=0,则ABC是( )A等腰三角形;B直角
16、三角形;C等腰三角形或直角三角形;D等腰直角三角形。2、已知ABC的三边为a、b、c,且a+b=4,ab=1,c=,试判定ABC的形状。 3若ABC的三边a、b、c,满足a:b:c=1:1:,试判断ABC的形状。考点三:互逆命题与互逆定理问题1、说出下列命题的逆命题,这些命题的逆命题成立吗?同旁内角互补,两条直线平行。如果两个实数的平方相等,那么两个实数平方相等。线段垂直平分线上的点到线段两端点的距离相等。直角三角形中30角所对的直角边等于斜边的一半。分析:每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。理顺他们之间的关系,原命题有真有假,逆命题也
17、有真有假,可能都真,也可能一真一假,还可能都假。考点四:面积问题1、已知:如图,四边形ABCD,ADBC,AB=4,BC=6,CD=5,AD=3。求:四边形ABCD的面积。分析:作DEAB,连结BD,则可以证明ABDEDB(ASA);DE=AB=4,BE=AD=3,EC=EB=3;在DEC中,3、4、5勾股数,DEC为直角三角形,DEBC;利用梯形面积公式可解,或利用三角形的面积。2、若ABC的三边a、b、c满足a2+b2+c2+50=6a+8b+10c,求ABC的面积。ACDBE第1题图考点五:折叠问题1、 如图,有一个直角三角形,两条直角边AC=6cm,BC=8cm,现将直角边AC沿直线A
18、D折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?2如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,BC/交AD于E,AD=8,AB=4,则DE的长为( )A3 B4 C5 D6考点六:无理数在数轴上表示问题如图所示:数轴上点A所表示的数为a,则a的值是( B )A+1 B-1 C-+1 D考点七:应用(航海、侧面展开图、最值,是否受污染问题)例为筹备迎新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图(1),已知圆筒高108,其截面周长为36,如果在表面缠绕油纸4圈,应裁剪多长油纸图()图()分析:此题的难点在于将圆柱展开后,纸带会发生什么样的变
19、化,纸带被相应剪断为相等的4段,随着圆柱而展开解:将圆筒展开后成为一个矩形,如图(2)整个油纸也随之分成相等4段只需求出AC长即可,在RtABC中,AB=36,BC=由勾股定理得AC=AB+BC=36+27AC=45,故整个油纸的长为454=180()说明:此题对空间想象能力要求较高,一条曲线怎样随着圆柱的展开成为4条线段,同学们可以用纸卷成一个筒帮助自己分析一下,将曲线变成直线来解决问题1如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 下册 知识点 典型 例题
限制150内