历届数学高考试题精选——导数及其应用(共50页).doc
《历届数学高考试题精选——导数及其应用(共50页).doc》由会员分享,可在线阅读,更多相关《历届数学高考试题精选——导数及其应用(共50页).doc(50页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上历届高考中的“导数”试题精选(文科自我测试)一、选择题:(每小题5分,计50分)1.(2005全国卷文)函数,已知在时取得极值,则=( ) (A)2(B)3(C)4(D)52(2008海南、宁夏文)设,若,则( )A. B. C. D. 3(2005广东)函数是减函数的区间为( )A B C D(0,2)4.(2008安徽文)设函数 则( )A有最大值 B有最小值 C是增函数D是减函数5(2007福建文、理)已知对任意实数x有f(x)=f(x),g(-x)=g(x),且x0时,f(x)0,g(x)0,则x0,g(x)0 B f(x)0,g(x)0C f(x)0 D f
2、(x)0,g(x)0)有极大值9. ()求m的值; ()若斜率为-5的直线是曲线的切线,求此直线方程.历届高考中的“导数”试题精选(文科自我测试) 参考答案一. 选择题:(每小题5分,计50分)二、填空题:(每小题5分,计20分)11. ; 12. ;13. 32 ;14. 2 , -2 .三、解答题:(15,16小题各12分,其余各小题各14分)15. 解:(I) f (x)3x26x9令f (x)0,解得x3, 所以函数f(x)的单调递减区间为(,1),(3,) (II)因为f(2)81218a=2a,f(2)81218a22a, 所以f(2)f(2)因为在(1,3)上f (x)0,所以f
3、(x)在1, 2上单调递增,又由于f(x)在2,1上单调递减,因此f(2)和f(1)分别是f(x)在区间2,2上的最大值和最小值,于是有 22a20,解得 a2 故f(x)=x33x29x2,因此f(1)13927, 即函数f(x)在区间2,2上的最小值为716.解(),。从而是一个奇函数,所以得,由奇函数定义得;()由()知,从而,由此可知,和是函数是单调递增区间;是函数是单调递减区间;在时,取得极大值,极大值为,在时,取得极小值,极小值为。17.解:()由的图象过点P(0,2),d=2知,所以 ,(x)=3x2+2bx+c,由在(-1,(-1)处的切线方程是6x-y+7=0,知-6-f(-
4、1)+7=0,即f(-1)=1, (-1)=6,即解得b=c=-3.故所求的解析式为f(x)=x3-3x2-3x+2,() (x)=3x2-6x-3,令3x2-6x-3=0即x2-2x-1=0,解得x1=1-,x2=1+,当x1+时, (x)0;当1-x1+时, (x)0f(x)=x3-3x2-3x+2在(1+,+)内是增函数,在(-, 1-)内是增函数,在(1-,1+)内是减函数.18.解:设长方体的宽为x(m),则长为2x(m),高为.故长方体的体积为从而令V(x)0,解得x=0(舍去)或x=1,因此x=1.当0x1时,V(x)0;当1x时,V(x)0,故在x=1处V(x)取得极大值,并且
5、这个极大值就是V(x)的最大值。从而最大体积VV(x)912-613(m3),此时长方体的长为2 m,高为1.5 m.答:当长方体的长为2 m时,宽为1 m,高为1.5 m时,体积最大,最大体积为3 m3。解:()因为是的极值点,所以,即,因此经验证,当时,是函数的极值点()由题设,当在区间上的最大值为时,对一切都成立,解法一:即对一切都成立令,则由,可知在上单调递减,所以, 故a的取值范围是 解法二:也即对一切都成立, (1)当a=0时,-3x-60在上成立; (2)当时,抛物线的对称轴为,当a0时,有h(0)= -60, 所以h(x)在上单调递减,h(x) 0时,因为h(0)= -60).
6、()令F(x)xf(x),讨论F(x)在(0.)内的单调性并求极值;()求证:当x1时,恒有xln2x2a ln x1.历届高考中的“导数”试题精选(理科自我测试)参考答案一、选择题:(每小题5分,计50分)二、填空题:(每小题5分,计20分)11. 3 ; 12; 13. 2 ; 14. ,球的体积函数的导数等于球的表面积函数三、解答题:(15,16小题各12分,其余各小题各14分)15. 解:每月生产x吨时的利润为 ,故它就是最大值点,且最大值为: 答:每月生产200吨产品时利润达到最大,最大利润为315万元.16. 解:()因为, 所以 即当 因斜率最小的切线与平行,即该切线的斜率为-1
7、2, 所以 解得 ()由()知 17解:(1) 求导:当时,, 在上递增当,求得两根为即在递增, 递减, 递增(2)要使f(x)在在区间内是减函数,当且仅当,在恒成立,由的图像可知,只需,即, 解得。a2。所以,的取值范围。18.解:()因为 所以切线的斜率为故切线的方程为即。()令y= 0得x=t+1, x=0得所以S(t)=从而当(0,1)时,0, 当(1,+)时,0)的图像在点(ak,ak2)处的切线与x轴的交点的横坐标为ak+1,,若a1=16,则a1+a3+a5的值是_【命题立意】本题考查导数的几何意义、函数的切线方程以及数列的通项等内容。【思路点拨】先由导数的几何意义求得函数y=x
8、2(x0)的图像在点(ak,ak2)处的切线的斜率,然后求得切线方程,再由,即可求得切线与x轴交点的横坐标。【规范解答】由y=x2(x0)得,所以函数y=x2(x0)在点(ak,ak2)处的切线方程为:当时,解得,所以.【答案】217.(2010江苏高考4)将边长为1m正三角形薄片沿一条平行于某边的直线剪成两块,其中一块是梯形,记,则S的最小值是_ _。【命题立意】 本题考查函数中的建模在实际问题中的应用,以及等价转化思想。【思路点拨】可设剪成的小正三角形的边长为,然后用分别表示梯形的周长和面积,从而将S用x表示,利用函数的观点解决.【规范解答】设剪成的小正三角形的边长为,则:方法一:利用导数
9、的方法求最小值。,当时,递减;当时,递增;故当时,S的最小值是。方法二:利用函数的方法求最小值令,则:故当时,S的最小值是。【答案】【方法技巧】函数的最值是函数最重要的性质之一,高考不但在填空题中考查,还会在应用题、函数导数的的综合解答题中考察。高中阶段,常见的求函数的最值的常用方法有:换元法、有界性法、数形结合法、导数法和基本不等式法。8.(2010陕西高考理科3)从如图所示的长方形区域内任取一个点M(x,y),则点M取自阴影部分的概率为 ;【命题立意】本题考查积分、几何概率的简单运算,属送分题。【思路点拨】由积分求出阴影部分的面积即可【规范解答】阴影部分的面积为所以点M取自阴影部分的概率为
10、答案:9(2010 海南高考理科T13)设y=f(x)为区间0,1上的连续函数,且恒有0f(x) 1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间0,1上的均匀随机数,和,由此得到N个点(i=1,2,N),在数出其中满足(i=1,2,N)的点数,那么由随机模拟方法可得积分的近似值为 .【命题立意】本题主要考查了定积分的几何意义以及几何概型的计算公式.【思路点拨】由随机模拟想到几何概型,然后结合定积分的几何意义进行求解.【规范解答】由题意可知,所有取值构成的区域是一个边长为1的正方形,而满足的点落在y=f(x)、以及、围成的区域内,由几何概型的计算公式可知的近似值为.答案:10.(
11、2010北京高考理科8)已知函数()=In(1+)-+, (0)。()当=2时,求曲线=()在点(1,(1)处的切线方程;()求()的单调区间。【命题立意】本题考查了导数的应用,考查利用导数求切线方程及单调区间。解决本题时一个易错点是忽视定义域。【思路点拨】(1)求出,再代入点斜式方程即可得到切线方程;(2)由讨论的正负,从而确定单调区间。【规范解答】(I)当时, 由于, 所以曲线在点处的切线方程为 即 (II),.当时,.所以,在区间上,;在区间上,.故的单调递增区间是,单调递减区间是.当时,由,得,所以,在区间和上,;在区间上,故的单调递增区间是和,单调递减区间是.当时,故的单调递增区间是
12、.当时,得,.所以在区间和上,;在区间上,故得单调递增区间是和,单调递减区间是【方法技巧】(1)过的切线方程为。(2)求单调区间时要在定义域内讨论内的正负。11.(2010安徽高考文科20)设函数,求函数的单调区间与极值。【命题立意】本题主要考查导数的运算,利用导数研究函数的单调性与极值的方法,考查考生运算能力、综合分析问题能力和问题的化归转化能力。【思路点拨】对函数求导,分析导数的符号情况,从而确定的单调区间和极值。【规范解答】+-0+极大值极小值【方法技巧】利用导数研究函数的单调性和极值是解决函数单调性、极值问题的常用方法,简单易行,具体操作流程如下:(1)求导数;(2)求方程的全部实根;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 历届 数学 高考 试题 精选 导数 及其 应用 50
限制150内