题型最全的递推数列求通项公式的习题(共5页).doc
《题型最全的递推数列求通项公式的习题(共5页).doc》由会员分享,可在线阅读,更多相关《题型最全的递推数列求通项公式的习题(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高考递推数列题型分类归纳解析新泰一中 闫辉 各种数列问题在很多情形下,就是对数列通项公式的求解。特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。我现在总结出几种求解数列通项公式的方法,希望能对大家有帮助。类型1 解法:把原递推公式转化为,利用累加法(逐差相加法)求解。例1. 已知数列满足,求。变式: 已知数列,且a2k=a2k1+(1)k, a2k+1=a2k+3k, 其中k=1,2,3,.(I)求a3, a5;(II)求 an的通项公式.类型2 解法:把原递推公式转化为,利用累乘法(逐商相乘法)求解。例1:已知数列满足,求。例2
2、:已知, ,求。变式:(2004,全国I,理15)已知数列an,满足a1=1, (n2),则an的通项 类型3 (其中p,q均为常数,)。解法(待定系数法):把原递推公式转化为:,其中,再利用换元法转化为等比数列求解。例:已知数列中,求.变式:(2006,重庆,文,14)在数列中,若,则该数列的通项_变式:(2006. 福建.理22.本小题满分14分)已知数列满足(I)求数列的通项公式;(II)若数列bn滿足证明:数列bn是等差数列;()证明:类型4 (其中p,q均为常数,)。 (或,其中p,q, r均为常数) 。解法:一般地,要先在原递推公式两边同除以,得:引入辅助数列(其中),得:再待定系
3、数法解决。例:已知数列中,,,求。变式:(2006,全国I,理22,本小题满分12分)设数列的前项的和,()求首项与通项;()设,证明:类型5 递推公式为(其中p,q均为常数)。解法一(待定系数法):先把原递推公式转化为其中s,t满足解法二(特征根法):对于由递推公式,给出的数列,方程,叫做数列的特征方程。若是特征方程的两个根,当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组);当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组)。解法一(待定系数迭加法):数列:, ,求数列的通项公式。例:已知数列中,,,求。变式:1.已知数列满足(I)证明:
4、数列是等比数列;(II)求数列的通项公式;(III)若数列满足证明是等差数列 2.已知数列中,,,求3.已知数列中,是其前项和,并且,设数列,求证:数列是等比数列;设数列,求证:数列是等差数列;求数列的通项公式及前项和。类型6 递推公式为与的关系式。(或)解法:这种类型一般利用与消去 或与消去进行求解。例:已知数列前n项和.(1)求与的关系;(2)求通项公式.(2)应用类型4(其中p,q均为常数,)的方法,上式两边同乘以得:由.于是数列是以2为首项,2为公差的等差数列,所以变式:(2006,陕西,理,20本小题满分12分) 已知正项数列an,其前n项和Sn满足10Sn=an2+5an+6且a1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 题型 数列 求通项 公式 习题
限制150内