行列式的计算方法(课堂讲解版)(共20页).doc
《行列式的计算方法(课堂讲解版)(共20页).doc》由会员分享,可在线阅读,更多相关《行列式的计算方法(课堂讲解版)(共20页).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上计算n阶行列式的若干方法举例n阶行列式的计算方法很多,除非零元素较少时可利用定义计算(按照某一列或某一行展开完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。1利用行列式定义直接计算例 计算行列式 解 Dn中不为零的项用一般形式表示为 .该项列标排列的逆序数t(n1 n21n)等于,故 2利用行列式的性质计算例: 一个n阶行列式的元素满足 则称Dn为反对称行列式, 证明:奇数阶反对称行列式为零. 证明:由知,即故行列式Dn可表示为,由行列式的
2、性质, 当n为奇数时,得Dn =Dn,因而得Dn = 0.3化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。这是计算行列式的基本方法重要方法之一。因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。原则上,每个行列式都可利用行列式的性质化为三角形行列式。但对于阶数高的行列式,在一般情况下,计算往往较繁。因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。
3、例1 计算行列式解 这是一个阶数不高的数值行列式,通常将它化为上(下)三角行列式来计算例2 计算n阶行列式解 这个行列式每一列的元素,除了主对角线上的外,都是相同的,且各列的结构相似,因此n列之和全同将第2,3,n列都加到第一列上,就可以提出公因子且使第一列的元素全是1例3 计算n阶行列式 解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,n列都加到第1列上,行列式不变,得例4:浙江大学2004年攻读硕士研究生入学考试试题第一大题第2小题(重庆大学2004年攻读硕士研究生入学考试试题第三大题第1小题)的解答中需要计算如下行列式的值:分析显然若直接化为三角形行列式,计
4、算很繁,所以我们要充分利用行列式的性质。注意到从第1列开始;每一列与它一列中有n-1个数是差1的,根据行列式的性质,先从第n-1列开始乘以1加到第n列,第n-2列乘以1加到第n-1列,一直到第一列乘以1加到第2列。然后把第1行乘以1加到各行去,再将其化为三角形行列式,计算就简单多了。解:4降阶法(按行(列)展开法)降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是根据行列式的特点,先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。例1、计算20阶行列式分析这个行列式中没有一个零元素,若直接应用按行(列)展开法
5、逐次降阶直至化许许多多个2阶行列式计算,需进行20!*201次加减法和乘法运算,这人根本是无法完成的,更何况是n阶。但若利用行列式的性质将其化为有很多零元素,则很快就可算出结果。注意到此行列式的相邻两列(行)的对应元素仅差1,因此,可按下述方法计算:解:例2 计算n阶行列式解 将Dn按第1行展开.例3 计算n(n2)阶行列式解 按第一行展开,得 再将上式等号右边的第二个行列式按第一列展开,则可得到5递(逆)推公式法递推法是根据行列式的构造特点,建立起 与 的递推关系式,逐步推下去,从而求出 的值。 有时也可以找到 与 , 的递推关系,最后利用 , 得到 的值。 注意用此方法一定要看行列式是否具
6、有较低阶的相同结构如果没有的话,即很难找出递推关系式,从而不能使用此方法。例1 计算行列式.解:将行列式按第列展开,有,得 。同理得 , 例2 计算解同理联立解得当时,例3 计算n阶行列式解 首先建立递推关系式按第一列展开,得:这里与有相同的结构,但阶数是的行列式现在,利用递推关系式计算结果对此,只需反复进行代换,得:因,故最后,用数学归纳法证明这样得到的结果是正确的当时,显然成立设对阶的情形结果正确,往证对n阶的情形也正确由、可知,对n阶的行列式结果也成立根据归纳法原理,对任意的正整数n,结论成立例4 证明n阶行列式证明 按第一列展开,得其中,等号右边的第一个行列式是与有相同结构但阶数为的行
7、列式,记作;第二个行列式,若将它按第一列展开就得到一个也与有相同结构但阶数为的行列式,记作这样,就有递推关系式:因为已将原行列式的结果给出,我们可根据得到的递推关系式来证明这个结果是正确的当时,结论正确当时,结论正确设对的情形结论正确,往证时结论也正确由 可知,对n阶行列式结果也成立 根据归纳法原理,对任意的正整数n,结论成立例5、2003年福州大学研究生入学考试试题第二大题第10小题要证如下行列式等式:(虽然这是一道证明题,但我们可以直接求出其值,从而证之。)分析此行列式的特点是:除主对角线及其上下两条对角线的元素外,其余的元素都为零,这种行列式称“三对角”行列式1。从行列式的左上方往右下方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 行列式 计算方法 课堂 讲解 20
限制150内