博弈论的发展历程(共8页).doc
《博弈论的发展历程(共8页).doc》由会员分享,可在线阅读,更多相关《博弈论的发展历程(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上博弈论的发展历程虽然早在18世纪初以前便开始了对具有策略依存特点的决策问题的零星研究,但博弈论真正的发展还是在20世纪。20世纪初期是博弈论的萌芽阶段,其研究对象主要是从竞赛与游戏中引申出来的严格竞争博弈,即二人零和博弈。这类博弈中不存在合作或联合行为,对弈两方的利益严格对立,一方所得必意味着存在另一方的等量损失。这符合下棋等二人室内游戏的情形,但应用在经济与政治上,则大多数情况并不合适。此时,关于二人零和博弈理论有丰硕的研究成果,尤其是提出了博弈扩展型策略、混合策略等重要概念,为日后研究对象范围的拓展与研究的深化奠定了基础。这一阶段最重要的成就是泽梅罗定理(1913
2、)与冯诺伊曼的最小最大定理(1928),后者为二人零和博弈提供了解法,同时对博弈论的发展产生了重大影响,例如非合作几人博弈中的基本概念纳什均衡就是最小最大定理的延伸与推广。1944年,美国数学家冯诺伊曼(Von Neumann)和摩根斯坦(Morgensien)合著的博弈论与经济行为一书的出版,标志着系统的博弈理论的初步形成。该巨著汇集了当时博弈论的研究成果,将其框架首次完整而清晰地表述出来,使其作为一门学科获得了应有的地位。同时身为经济学家的摩根斯顿首先清楚而全面地确认,经济行为者在决策时应考虑到经济学上的利益冲突性质。该书详尽地讨论了二人零和博弈,并对合作博弈作了深入探讨,开辟了一些新的研
3、究领域。更重要的是将博弈论加以空前广泛的应用,尤其是在经济学上,由于博弈论数学上的严整性与经济学应用上的广泛性,一些经济学家将该巨著的出版视为数理经济学确立的里程碑。接下来的一段时期对合作博弈的研究有了长足进步。按豪尔绍尼(1966)的观点,如果一博弈中意愿表示协议、承诺、威胁具有完全的约束力并可强制执行,则该博弈是合作的。如意愿表示不可强制执行,则为非合作博弈。非合作博弈随后发展起来,纳什、泽尔滕和豪尔绍尼因此而获奖,但当时注意力主要集中在合作博弈上。事实上,合作博弈可视为非合作博弈的特殊情况,它略去非合作个体之间建立合作关系的过程而着重研究合作的可能性与形式。由于省去从非合作到合作过程中繁
4、复的难以尽述的细节,合作博弈能对合作问题有更清晰的把握。为了解决合作博弈中所遇到的问题,这一期间提出了联盟博弈、稳定集、解概念、可转移效用、核心等重要概念与思想。1950年代是博弈论的成长期,纳什为非合作博弈的一般理论奠定了基础,提出了博弈论中最为重要的概念纳什均衡,开辟了一个全新的研究领域。非合作理论发展起来,如阿尔塔克的囚徒困境、重复博弈概念等。合作博弈理论在这个阶段得到进一步发展,如沙普利值概念、核概念等。博弈论的研究队伍开始扩大,兰德公司在圣基尼卡开业,在随后的许多年里,这里成为博弈论的研究中心。此经济学逐渐成为博弈论最重要的应用领域。1960年代是博弈论的成熟期。不完全信息与非转移效
5、用联盟博弈那样的扩充使理论变得更具广泛应用性。常识性的基本概念得到了系统阐述与澄清。博弈论成了完整而系统的体系。更重要的是,博弈论与数理经济及经济理论建立了牢固而持久的关系。例如,等价性原理说明博弈论与经济理论间存在竞争市场经济的价格均衡与相应博弈的重要解概念之间的对应关系。豪尔绍尼与泽尔滕正是在这一时期开始他们的工作,豪尔绍尼提出了不完全信息理论,泽尔滕开始其均衡选择问题的研究。1970年代至今是博弈论的丰富壮大期。博弈论在所有研究领域都得到重大突破。博弈论开始对其它学科的研究产生强有力的影响,计算机技术的飞速发展使得研究复杂与涉及大规模计算的博弈模型发展起来。在理论上,博弈论从基本概念到理
6、论推演均形成了一个完整与内容丰富的体系。在应用上,政治与经济模型有了深入研究,非合作博弈理论应用到大批特殊的经济模型。同时博弈论应用到生物学、计算机科学、道德哲学等领域,如随机策略这样的概念得到了重新解释。渐渐地,博弈论变得大众化起来。不再是仅为少数研究者所知。要对每年所发表的有关博弈论数以千计的文献进行了解已不是件容易的事。至今,博弈论仍在不断发展与深化,预测其可能出现的创新与成就是很困难的。在博弈论的发展过程中,纳什奠定了非合作博弈的理论框架与概念基础,他的名字与博弈论的中心概念纳什均衡联在一起;豪尔绍尼与泽尔滕则致力于博弈论的进一步发展与应用。在非合作博弈论和经济分析里所应用的博弈论思想
7、中,纳什均衡都处于核心地位。克雷普斯(D.Kreps)教授认为,如今在每一个经济学领域及与其相关的金融、会计、市场学甚至政治学等领域,在消化其近期研究成果过程中,对纳什均衡概念的理解均起着重要作用。虽然作为先驱者的古诺(Cournot)已在其研究中开创这一思想的先河,但其目前的形式则是纳什独立完成得出的卓越成就。美国普林斯顿大学的数学家和统计学家纳什。从1950年至1954年,他发表了多篇论述博弈论的文章,为非合作的一般理论和合作博弈的谈判理论奠定了基础。他规定了非合作博弈的形式,并定义了著名的“纳什均衡点”。纳什最先对合作与非合作进行了区别。纳什认为以前的理论包含着某种被称为合作类型的人博弈
8、思想,它以一种对能由局中人形成的不同合作之间相互关系的分析为基础;与此相反,纳什认为他自己的理论则“以缺乏合作为基础,在其中假定每个参与者都各行其是,与其他人之间没有合作与沟通”。该思想拓展了博弈论的研究范围,并增强了其应用性。在阐明了合作与非合作之间区别的基础上,纳什定义了著名的“纳什均衡点”,并对它的存在进行了证明。纳什均衡的定义一般是通过简单确定一个正常形式的有限局中人和行动的博弈来给出的。在纯策略中,它是指这样一种策略分布:假使其他局中人不变换其策略,则任何一个局中人都不能以单方面变换自己的策略来增加其效用。纳什还证明,在一个有限局中人和行动的博弈中,至少总存在一个纳什均衡,虽然当我们
9、考察混合策略时才能完全保证其存在,因为有例子表明,存在着没有纯策略均衡的对策。这一定义实际上包含着一个前提假定,即局中人对游戏结构有充分的了解,也就是说拥有完全信息,以便能够导出他们自己的预测。纳什均衡的意义直到现在仍是探讨与争论的题目。一般认为,它是随不同情况而变化的一种过程。例如,假设在某种博弈中,局中人通过某些非强制手段就局中人的策略选择达成协议,这项协议具体确定了每个局中人选择的策略。由于协议无强制力量,局中人如果能通过违背协议而获得利益,则该协议无效。所以,为了保证协议有效,必须有一种局中人不可能因单方面违背协议而获益的机制,即形成一种纳什均衡。即,纳什均衡使得协议能够自我约束,无外
10、力作用下也能保证协议的生效。这里纳什均衡的意义在于保证协议的自我强制执行。但这并不是说每个纳什均衡都具有自我强制性,就多个局中人背信问题而言可能得出不同的结论。此外,这里并未讨论协议如何实施及无协议时的情况。纳什均衡在上述情况中的含义是有差别的。纳什均衡刻画了人们理性选择的结果:利益冲突达到一种稳态以至无人会单方面加以改变。纳什均衡并未对这一结果做出福利上即总体上优与劣的判断。这就允许存在一种情形:由于人们的不合作使得每个人都达不到可能的最大收益。在囚徒困境中表现得十分明显,其中唯一的纳什均衡是双方均交待,因为在其它策略组合下均有一方能因改变策略而获益。但是这一局势中的帕累托最优是双方均不交待
11、。这表明,帕累托最优并不一定能在纳什均衡点上实现。也即,在存在利益冲突的情况下,利己主义个人理性选择的结果在总体上可能并不是最有效的。进而,西方经济学中在经济人假设下,市场经济会达到或者趋向帕累托最优这一结论在引入利益冲突后有可能无法成立。在囚徒困境中,双方虽可在均不交待的情况下达到帕累托最优,却难以实现这一结果。这是由于缺乏对对方的信任。因对方可把策略改为交待而使自己获释得利,故无法信任对方会信守承诺。每个人追求自身利益最大化这个理性人假设更使这种信任失去基础。这说明,个人利己的理性选择并不能保证人们的处境都得到改善,结果可能对大家都不利。就此而言,纳什均衡揭示了利己理性的弱点。在人人求得自
12、利的同时,如何防止对一切人均不利的结果出现,这已成为今天博弈论和经济学中研究的热点问题。实际上,纳什的研究是基于“一个时期的模式”而做出的,是静态的,即在稳定的环境条件下,双方在不改变策略的情况下进行。但现实却在不断变化,并常有重复。后来人们在利用策略均衡分析特定的经济模型时,发现扩展形式的每一步在给定一局中人信息的情况下,纳什定义忽视了“离开均衡路线”的偶然性。为弥补这一不现实假设的缺陷,泽尔滕发展了动态的适应于每个不同时期的博弈,从而以此为开端,促进对策略均衡的各种精细改进的定义的出现。并且,在纳什均衡中还有一个完全信息的重要假设,即局中人都了解其对手要采取的策略。这种假设在以下一些情况中
13、看来特别不可信:某些局中人起初拥有其他人所缺乏的关于他们自己的爱好、能力甚至博弈规则方面的知识。如在经济学的应用中,这种不确定性可能反映为一个厂商起初对其竞争者的财务或人力资本资源等信息的不确定性。因此,要把纳什均衡分析运用于那种情景就不明智了。为此,豪尔绍尼建立了所谓不完全信息博弈,从而扩展了纳什分析的应用范围。泽尔滕的研究成果使纳什均衡概念进一步精致化与详细化,并推动了博弈论在各学科中的应用。针对纳什均衡概念的不完善性,纳什以后的不少研究者试图精化原来的概念,附加条件以便排除无说服力的纳什均衡点。泽尔滕在这方面提出了两个著名的新概念:子博弈完美均衡点(或简称子博弈完美点)和颤抖手完美均衡点
14、(或简称“颤抖手完美点)。子博弈完美点是泽尔滕1965年提出的。他认为在局中人选择应变计划的博弈中,并非所有纳什均衡点都是同样合理的,因为某些均衡解要求局中人具有实施“空洞威胁”(empty threat)的能力,即采用事实上无法实施的应变计划,从而这类均衡解失去实际意义。泽尔滕提出子博弈完美点的概念,是要把依赖于这类威胁的均衡点排除在考虑之外,即在原则上排除直观不合理的纳什均衡。在扩展型模式中,其思想表明了先行者利用其先行地位及后行者必然理性地反应的事实,来达到对其最有利的纳什均衡点。求解子博弈完美点的方法是逆向归纳法(倒推法)。这一概念可以推广到动态多时段博弈的情况。泽尔滕的子博弈完美点概
15、念简单、直观,且与经济学中许多实际情况如寡头市场等相符合。在许多情景中,由于局中人的策略选择会引起一系列层次的连锁反应,在策略选择时就应对此加以考虑。但子博弈均衡点集合取决于扩展型博弈的细节,同时不能完全排除所有不直观不合理的纳什均衡点。为弥补不足,泽尔滕(1975)提出了“颤抖手完美点”的概念。“颤抖手完美点”概念的意蕴是:在博弈中每个局中人按纳什均衡点进行策略选择时难免会犯错误,即偶尔会偏离均衡策略(形象地说,可能手会颤抖)。这样局中人应该选择那样的纳什均衡点,使得自己犯错误时,其它人按照他们的最佳反应策略,仍如同自己未发生错误一样做出同样的策略选择。事实上,这意味着局中人在策略选择时应考
16、虑到自己有可能做出错误选择,从而会力图避免因自己的偶然错误而蒙受其它局中人改变相应策略给自己带来的损失。当然这一概念假定对任一方的颤抖概率都是一样的。其实,在博弈中人们会更小心地避免在损失大的方向上犯错误,这样向不同方向的颤抖概率就会不同。由此麦逊(R. Myerson)提出了“适当均衡点”的概念,进一步完善了颤抖手均衡点。在颤抖手均衡点概念中,泽尔滕利用人类行为包含非理性因素(局中人会犯错)这一特点,形成对理性概念的一种新理解。这种方法无疑是博弈理论的一个重大突破。此外,泽尔滕在把博弈论应用于具体经济分析方面做出了卓越成就,如对非合作博弈中的联盟形成和议价模型等的深入研究。他在把博弈论应用于
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 博弈论 发展 历程
限制150内