2014年人教A版选修2-1教案-2.4.2-抛物线的简单几何性质教案(共6页).doc





《2014年人教A版选修2-1教案-2.4.2-抛物线的简单几何性质教案(共6页).doc》由会员分享,可在线阅读,更多相关《2014年人教A版选修2-1教案-2.4.2-抛物线的简单几何性质教案(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2.4.2抛物线的简单几何性质一、教学目标(一)知识教学点使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质(二)能力训练点从抛物线的标准方程出发,推导抛物线的性质,从而培养学生分析、归纳、推理等能力(三)学科渗透点使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线方程的关系概念的理解,这样才能解决抛物线中的弦、最值等问题二、教材分析1重点:抛物线的几何性质及初步运用(解决办法:引导学生类比椭圆、双曲线的几何性质得出)2难点:抛物线的几何性质的应用(解决办法:通过几个典型例题的讲解,使学生掌握几何性质的应用)3疑点:抛物线的
2、焦半径和焦点弦长公式来源:学科网(解决办法:引导学生证明并加以记忆)来源:学#科#网三、活动设计提问、填表、讲解、演板、口答教学过程【情境设置】由一名学生回答,教师板书问题 抛物线的标准方程是怎样的?答为:抛物线的标准方程是 与椭圆、双曲线一样,通过抛物线的标准方程可以研究它的几何性质下面我们根据抛物线的标准方程: 来研究它的几何性质【探索研究】1抛物线的几何性质(1)范围因为 ,由方程可知 ,所以抛物线在 轴的右侧,当 的值增大时, 也增大,这说明抛物线向右上方和右下方无限延伸(2)对称性以 代 ,方程不变,所以抛物线关于 轴对称我们把抛物线的对称轴叫做抛物线的轴(3)顶点抛物线与它的轴的交
3、点叫做抛物线的顶点,在方程中,当 时 ,因此抛物线的顶点就是坐标原点(4)离心率抛物线上的点与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,由抛物线的定义可知 其他三种标准方程抛物线的几何性质可类似地求得,教师用小黑板给出来表让学生填写再向学生提出问题:与椭圆、双曲线的几何性质比较,抛物线的几何性质有什么特点?学生和教师共同小结:(1)抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但没有渐近线;(2)抛物线只有一条对称轴,没有对称中心;(3)抛物线只有一个顶点、一个焦点、一条准线;(4)抛物线的离心率是确定的,为1【例题分析】例1已知抛物线关于 轴对称,它的顶点在坐标原点,并且经过点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 年人教 选修 教案 2.4 抛物线 简单 几何 性质

限制150内