简单线性规划导学案(共5页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《简单线性规划导学案(共5页).doc》由会员分享,可在线阅读,更多相关《简单线性规划导学案(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上简单线性规划(导学案)【知识梳理】1.判别不等式表示的平面区域时,只要在直线的一侧任取一点(一般当直线不经过原点时,代入原点检验),将它的坐标代入不等式,如果该点坐标满足不等式,不等式就表示该点的平面区域,如果不满足不等式,就表示这个点所在区域的的平面区域。由几个不等式组成的不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分。2.不等式组是一组对变量x、y的约束条件,由于这组约束条件都是关于x、y的一次不等式,所以又可称其为线性约束条件.z=Ax+By是欲达到最大值或最小值所涉及的变量x、y的解析式,我们把它称为目标函数.由于z=Ax+By又是关于x、y的一
2、次解析式,所以又可叫做线性目标函数. 另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.3.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解()和()分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. 线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行4.用图解法解决简单的线性规划问题的基本步骤:(1)要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).(
3、2)设z=0,画出直线l0.(3)观察、分析,平移直线l0,从而找到最优解.(4)最后求得目标函数的最大值及最小值.1.重点:灵活运用二元一次不等式(组)来表示的平面区域,掌握线性规划的图解法2.难点:如何确定不等式表示的哪一侧区域,如何寻求线性规划问题的最优解.课前预习:1不等式表示的平面区域在直线的( )左上方 右上方 左下方 右下方2表示图中阴影部分的二元一次不等式组是( )3.已知点的坐标满足条件 则的最大值为( A )A. B. 8 C. 16 D. 104.360自主学习1,自主学习1、2考点一:不等式(组)表示的平面区域的求法例1.360示范1,展示1,变式:1. .不等式组表示
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 简单 线性规划 导学案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内