初二数学经典题型(共5页).doc
《初二数学经典题型(共5页).doc》由会员分享,可在线阅读,更多相关《初二数学经典题型(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上初二数学经典题型1已知:如图,P是正方形ABCD内点,PADPDA150求证:PBC是正三角形 ANFECDMB2.已知:如图,在四边形ABCD中,ADBC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F求证:DENF3、如图,分别以ABC的AC和BC为一边,在ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点求证:点P到边AB的距离等于AB的一半4、设P是平行四边形ABCD内部的一点,且PBAPDA求证:PABPCB5.P为正方形ABCD内的一点,并且PAa,PB2a,PC=3a正方形的边长6.如图,P是边长为1的正方形ABCD对角线AC
2、上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.(1)求证: PE=PD ; PEPD;(2)设AP=x, PBE的面积为y. 求出y关于x的函数关系式,并写出x的取值范围; 当x取何值时,y取得最大值,并求出这个最大值. 答案1、证明如下。APCDB首先,PA=PD,PAD=PDA=(180-150)2=15,PAB=90-15=75。在正方形ABCD之外以AD为底边作正三角形ADQ, 连接PQ, 则PDQ=60+15=75,同样PAQ=75,又AQ=DQ,,PA=PD,所以PAQPDQ, 那么PQA=PQD=602=30,在PQA中,APQ=180-30-75=75=PAQ=
3、PAB,于是PQ=AQ=AB,显然PAQPAB,得PBA=PQA=30,PB=PQ=AB=BC,PBC=90-30=60,所以ABC是正三角形。2、证明:连接AC,并取AC的中点G,连接GF,GM.又点N为CD的中点,则GN=AD/2;GNAD,GNM=DEM;(1)同理:GM=BC/2;GMBC,GMN=CFN;(2)又AD=BC,则:GN=GM,GNM=GMN.故:DEM=CFN.3、证明:分别过E、C、F作直线AB的垂线,垂足分别为M、O、N,在梯形MEFN中,WE平行NF因为P为EF中点,PQ平行于两底PCGFBQADE所以PQ为梯形MEFN中位线,所以PQ(MENF)/2又因为,角0
4、CB角OBC90角NBF角CBO所以角OCB=角NBF而角C0B角Rt角BNFCB=BF所以OCB全等于NBFMEA全等于OAC(同理)所以EMAO,0BNF所以PQ=AB/2.4、过点P作DA的平行线,过点A作DP的平行线,两者相交于点E;连接BE 因为DP/AE,AD/PE PADCB所以,四边形AEPD为平行四边形 所以,PDA=AEP 已知,PDA=PBA 所以,PBA=AEP 所以,A、E、B、P四点共圆 所以,PAB=PEB 因为四边形AEPD为平行四边形,所以:PE/AD,且PE=AD 而,四边形ABCD为平行四边形,所以:AD/BC,且AD=BC 所以,PE/BC,且PE=BC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 数学 经典 题型
限制150内