五种方法求二面角及练习题(共9页).docx
《五种方法求二面角及练习题(共9页).docx》由会员分享,可在线阅读,更多相关《五种方法求二面角及练习题(共9页).docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上五种方法求二面角及练习题一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。1如图,在棱长为a的正方体ABCDA1B1C1D1中,求:(1)二面角C1BDC的正切值(2)二面角2.如图,四棱锥中,底面为矩形,底面,点M在侧棱上,=60,M在侧棱的中点(1)求二面角的余弦值。二、三垂线法:三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直通常当点P在一个半平面上则通常用三垂线
2、定理法求二面角的大小。1. 如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB/CD,AB=4, BC=CD=2, AA=2, E、E、F分别是棱AD、AA、AB的中点。(1) 证明:直线EE/平面FCC;(2)求二面角B-FC-C的余弦值。 2.如图,在四棱锥中,底面是矩形已知()证明平面;()求异面直线与所成的角的大小;()求二面角的大小三补棱法本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决1.已知斜三棱柱ABCA1B1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 方法 二面角 练习题
限制150内