因式分解教案(共14页).doc





《因式分解教案(共14页).doc》由会员分享,可在线阅读,更多相关《因式分解教案(共14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上3、1多项式的因式分解教学目标1.使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系.2.通过观察,发现分解因式与整式乘法的关系,培养学生的观察能力和语言概括能力.教学重点1.理解因式分解的意义.2.识别分解因式与整式乘法的关系.教学难点通过观察,归纳分解因式与整式乘法的关系.教学过程一、情境引入(复习巩固)讨论6能被2整除吗?你是怎样想的?与同伴交流.6能被2整除.因为6=32其中有一个因数为2,所以6能被2整除.6还能被哪些正整数整除?还能被3整除.从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式.二、自主学习你能尝试把a
2、3a化成n个整式的乘积的形式吗?与同伴交流.观察x2x与x21这两个代数式.3.做一做(1)计算下列各式:(m+4)(m4)=_; (y3)2=_;3x(x1)=_; m(a+b+c)=_;a(a+1)(a1)=_.(2)根据上面的算式填空:3x23x=( )( ); m216=( )( );ma+mb+mc=( )( ); y26y+9=( )2.能分析一下两个题中的形式变换吗?三、合作探究 在(1)中,等号左边都是乘积的形式,等号右边都是多项式;在(2)中正好相反,等号左边是多项式的形式,等号右边是整式乘积的形式.在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式变成整式乘积的形
3、式是因式分解.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式4.想一想由a(a+1)(a1)得到a3a的变形是什么运算?由a3a得到a(a+1)(a1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?由a(a+1)(a1)得到a3a的变形是整式乘法,由a3a得到a(a+1)(a1)的变形是分解因式,这两种过程正好相反.由(a+b)(ab)=a2b2可知,左边是整式乘法,右边是一个多项式;由a2b2=(a+b)(ab)来看,左边是一个多项式,右边是整式的乘积形式,所以这两个过程正好相反.如:(1)m(a+b+c)=ma+mb+mc(2)ma+mb+mc=m(a
4、+b+c)联系:等式(1)和(2)是同一个多项式的两种不同表现形式.区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算.等式(2)是把一个多项式化成几个整式的积的形式,是因式分解.所以,因式分解与整式乘法是互逆方向的变形.四.典例精讲5.例题:下列各式从左到右的变形,哪些是因式分解?(1)4a(a+2b)=4a2+8ab;(2)6ax3ax2=3ax(2x);(3)a24=(a+2)(a2);(4)x23x+2=x(x3)+2.(1)左边是整式乘积的形式,右边是一个多项式,因此从左到右是整式乘法,不是因式分解;(2)左边是一个多项式,右边是几个整式的积的形式,因此从左到右的变形是
5、因式分解;(3)和(2)相同,是因式分解;(4)不是因式分解,左右都是和形式五、课堂检测1.连一连解:2下列各式从左到右的变形,哪些是因式分解?(1)4a(a2b)4a28ab;(2)6ax3ax23ax(2x);(3)a24(a2)(a2);(4)x23x2x(x3)2六、课堂小结本节课学习了因式分解的意义,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形家庭作业:P57.58习题板书设计: 2.1多项式的因式分解定义:例题讲解课堂练习教学反思:3.2 提公因式法(1)教学目标1.通过对具体问题的分析及逆用分配律,使学生理解提取公因式法并能熟练地运用提取
6、公因式法分解因式 2.树立学生“化零为整”、“化归”的数学思想,培养学生完整地、辨证地看问题的思想。 3.在观察、对比、交流和讨论的数学活动中发掘知识,并使学生体验到学习的乐趣和数学的探索性。教学重点掌握公因式的概念,会使用提取公因式法进行因式分解,理解添括号法则。教学难点正确地找出公因式教学过程 一创设情境,(复习巩固) 让学生观察多项式:ma+mb (让学生说出其特点:都有m,含有两种运算乘法、加法;然后教师规范其特点,从而引出新知。) 二自主学习 各项都含有一个公共的因式m,我们把因式m叫做这个多项式各项的公因式。 注意:公因式是一个多项式中每一项都含有的相同的因式 。 又如:b是多项式
7、ab-b2各项的公因式2xy是多项式4x2y-6xy2z各项的公因式让学生说出公因式,学生可能会说是2或者是 x 、 y、2x、2y、2xy等,最后一起确定公因式2xy,让学生初步体会到确定公因式的方法。 三合作探究 指出下列各多项式中各项的公因式(以抢答的形式) ax+ay-a (a) 5x2y3-10x2y (5x2y) 24abc-9a2b2 (3ab) m2n+mn2 (mn) x(x-y)2-y(x-y) (x-y) 显然由定义可知,提取公因式法的关键是如何正确地寻找确定公因式的方法:(可以由学生讨论总结,然后教师进行归纳)公因式的系数应取各项系数的最大公约数(当系数是整数时) 字母
8、取各项的相同字母,且各字母的指数取最低次幂 根据分配律,可得m(a+b)=ma+mb逆变形,使得到ma+mb的因式分解形式:ma+mb=m(a+b) 这说明多项式ma+mb各项都含有的公因式可提到括号外面,将多项式ma+mb写成m(a+b)的形式,这种分解因式的方法叫做提取公因式法。 定义:一般地,如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行分解的方法叫做提取公因式法。四.典例精讲例1:把因式分解例2:把因式分解例3:把因式分解五、课堂检测1写出下列多项式各项的公因式(1)mamb;(2)4kx8ky;(3)5y320y2;(4)a2b2ab2ab。2把下列各式分解因式(1)8
9、x728(x9)(2)a2b5abab(a5)(3)4m36m22m2(2m3)(4)a2b5ab9bb(a25a9)(5)a2abac(a2abac)a(abc)(6)2x34x22x(2x34x22x)2x(x22x1)3把3x26xyx分解因式。六、课堂小结1提公因式法分解因式的一般形式,如:mambmcm(abc)这里的字母a、b、c、m可以是一个系数不为1的、多字母的、幂指数大于1的单项式2找公因式的一般步骤(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的(4)所有这些因式的乘积即为公因式3初学提公因式法
10、分解因式,最好先在各项中将公因式分解出来,如果这项就是公因式,也要将它写成乘1的形式,这样可以防范错误,即漏项的错误发生家庭作业:P60练习板书设计: 2.2.1提公因式法(一)一、1公因式与提公因式法分解因式的概念2例题讲解(例1)二、课堂练习(1随堂练习,2补充练习)教学反思3.2提公因式法(二)教学目标1进一步让学生掌握用提公因式法分解因式的方法。 2进一步培养学生的观察能力和类比推理能力。3通过观察能合理地进行分解因式的推导,并能清晰地阐述自己的观点教学重点能观察出公因式是多项式的情况,并能合理地进行分解因式教学难点准确找出公因式,并能正确进行分解因式教学过程一创设情境,(复习巩固)上
11、节课我们学习了用提公因式法分解因式,知道了一个多项式可以分解为一个单项式与一个多项式的积的形式,那么是不是所有的多项式分解以后都是同样的结果呢?本节课我们就来揭开这个谜二自主学习,合作探究1例题讲解例2把a(x3)2b(x3)分解因式分析:这个多项式整体而言可分为两大项,即a(x3)与2b(x3),每项中都含有(x3),因此可以把(x3)作为公因式提出来例3把下列各式分解因式:(1)a(xy)b(yx);(2)6(mn)312(nm)2分析:虽然a(xy)与b(yx)看上去没有公因式,但仔细观察可以看出(xy)与(yx)是互为相反数,如果把其中一个提取一个“”号,则可以出现公因式,如yx(xy
12、)(mn)3与(nm)2也是如此2做一做请在下列各式等号右边的括号前填入“”或“”号,使等式成立:(1)2a_(a2);(2)yx_(xy);(3)ba_(ab);(4)(ba)2_(ab)2;(5)mn_(mn);(6)s2t2_(s2t2)三课堂检测1把下列各式分解因式:(1)x(ab)y(ab);(2)3a(xy)(xy);(3)6(pq)212(qp);(4)a(m2)b(2m);(5)2(yx)23(xy);(6)mn(mn)m(nm)22把下列各式分解因式5(xy)310(yx)2;m(ab)n(ba)m(mn)n(nm);m(mn)n(mn)m(mn)(pq)n(nm)(pq);
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 因式分解 教案 14

限制150内