双曲线简单几何性质练习题(共7页).doc
《双曲线简单几何性质练习题(共7页).doc》由会员分享,可在线阅读,更多相关《双曲线简单几何性质练习题(共7页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上1已知双曲线的离心率为2,焦点是(4,0),(4,0),则双曲线方程为()A.1 B.1 C.1 D.12已知双曲线C:1(a0,b0)的离心率为,则C的渐近线方程为()Ayx Byx Cyx Dyx3下列双曲线中离心率为的是()A.1 B.1 C.1 D.14中心在原点,实轴在x轴上,一个焦点在直线3x4y120上的等轴双曲线方程是()Ax2y28 Bx2y24 Cy2x28 Dy2x245已知双曲线1的两条渐近线互相垂直,则双曲线的离心率为()A. B. C. D.6双曲线1的离心率e(1,2),则k的取值范围是()A(10,0) B(12,0) C(3,0) D
2、(60,12)7已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为N(12,15),则E的方程为()A.1 B.1 C.1 D.18双曲线1的两条渐近线的方程为_9已知双曲线中心在原点,一个顶点的坐标是(3,0)且焦距与虚轴长之比为54,则双曲线的标准方程为 10过双曲线x21的左焦点F1,作倾斜角为的直线AB,其中A,B分别为直线与双曲线的交点,则|AB|的长为_11过双曲线1(a0,b0)的左焦点且垂直于x轴的直线与双曲线相交于M,N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率为_12双曲线1的右顶点为A,右焦点为F,过点F平
3、行于双曲线的一条渐近线的直线与双曲线交于点B,则AFB的面积为_13求适合下列条件的双曲线的标准方程:(1)过点(3,),离心率e;(2)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,实轴长和虚轴长相等,且过点P(4,)14已知双曲线C:1(a0,b0)的离心率为,且.(1)求双曲线C的方程;(2)已知直线xym0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2y25上,求m的值专心-专注-专业参考答案1已知双曲线的离心率为2,焦点是(4,0),(4,0),则双曲线方程为()A.1B.1C.1 D.1解析:选A由题意知c4,焦点在x轴上, 所以21e24,所以,又由a2b24a2c
4、216,得a24,b212.所以双曲线方程为1.2(新课标卷)已知双曲线C:1(a0,b0)的离心率为,则C的渐近线方程为()Ayx ByxCyx Dyx解析:选C因为双曲线1的焦点在x轴上,所以双曲线的渐近线方程为yx.又离心率为e ,所以,所以双曲线的渐近线方程为yx.3下列双曲线中离心率为的是()A.1 B.1C.1 D.1解析:选B由e得e2,则,即a22b2.因此可知B正确4中心在原点,实轴在x轴上,一个焦点在直线3x4y120上的等轴双曲线方程是()Ax2y28 Bx2y24Cy2x28 Dy2x24解析:选A令y0得,x4,等轴双曲线的一个焦点坐标为(4,0),c4,a2c216
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 双曲线 简单 几何 性质 练习题
限制150内