消除谐波降损节能计算方法(共9页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《消除谐波降损节能计算方法(共9页).doc》由会员分享,可在线阅读,更多相关《消除谐波降损节能计算方法(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上消除谐波降损节能计算方法一、谐波损耗推导1、前言随着电力电子技术的发展,非线性负载得到广泛的应用,因此非线性负载带来的谐波问题逐步得到人们的重视,人们对谐波的研究逐步深入,研究重点侧重于谐波对电网及电网中设备造成的危害,对谐波产生的各种能源损耗研究不多,该文针对谐波附加损耗的计算是在奥地利George J,Wakileh博士的计算基础上由解放军理工大学汪彦良等四位导师补充完成。该文主要针对集肤效应增大导体的阻抗进行研究,根据日本电力公司提供的资料,5次谐波含量为10%时,就能使变压器损耗比不存在谐波时增大10%。2、集肤效应时谐波附加损耗分析各设备的损耗分类较复杂。以
2、变压器为例分析:变压器损耗分为:铜耗、铁耗、介质损耗、杂散损耗等。其铁耗又分为磁滞损耗和涡流损耗。不管分类如何复杂,按性质分只有两类:基本损耗和谐波损耗。谐波环境下,考虑集肤效应时,导体的各次谐波阻抗为 (1)式中,rn为导体中n次谐波电流所对应的电阻,;n为谐波次数。(1) 变压器的铜耗考虑集肤效应时,根据(1)可得变压器铜耗为 (2)式中,P为变压器铜耗,W;各次谐波电流,A;n=1时,表示基波电流;为变压器绕组基波电阻;为各次谐波含量,是指各次谐波电流与基波电流的比值,即表示为 后面公式采用都才是为了表达方便。表示谐波电流,表示基波电流。由式(2)可知,变压器的铜损耗由两部分构成。第一部
3、分为基本的铜损耗,是由基波电流产生的;第二部分为谐波损耗,它是基波损耗的K倍 (3)在变压器中,当绕组导线施加畸变电流时,发生第一次集肤效应;绕组磁化变压器铁心后,产生了畸变磁场,又施加在绕组上,在绕组导线上发生第二次集肤效应。当变压器绕组为-Y接线方式时,3n次零序谐波电流叠加。变压器的谐波损耗通常归类为杂散损耗,及线圈涡流损耗,它是引起变压器铁心额外发热的重要因素。在各类电器设备中,谐波电流的附件损耗占基本铜耗的比例,以变压器为较大。(2) 变压器铁耗铁耗是指发生在铁心中的损耗,铁心被外加励磁磁化,在磁化过程中产生了能量损耗。铁耗包括磁滞损耗和涡流损耗,它导致变压器和电机效率降低,铁心温度
4、升高,从而限制了出力的提高。磁滞损耗是由铁心磁化极性的反转造成的,有磁性材料的尺寸和品质、磁通密度的最大值和交流电流的频率决定的。对于正常范围1.5Wb/m2以下的磁通密度,基波频率下的磁滞损耗为 (4)式中,为常数,其值由铁心材料和尺寸决定:为交流电流的基波频率;为磁通密度n次谐波最大值;为指数,其值取决于铁心材料,通常为1.6。当考虑谐波时,由式(4)可得 (5)由(5)推导得 (6)式中,为n次谐波的磁滞损耗标值;为第n次谐波的磁滞损耗;n为谐波次数,n=1表示基波;为磁通密度n次谐波最大值;为磁化电流的第n次谐波峰值;为总磁滞损耗。涡流损耗是由涡流电流流动引起的功率损耗,涡流感生于变压
5、器铁心中,由交流励磁引起。基本涡流损耗为 (7)式中,k为常数,取决于铁心材料、尺寸和叠片厚度。考虑谐波及集肤效应时,由式(7)可得 (8) (9)式中,为n次谐波的磁滞损耗标值;为第n次谐波的磁滞损耗;n为谐波次数,n=1表示基波;为磁通密度n次谐波最大值;为磁化电流的第n次谐波峰值;为总涡流损耗。则总铁耗为 (10)由以上分析可知,铁心的损耗中无论是磁滞损耗还是涡流损耗,它的损耗都具有相同的形式,均是由基本损耗和谐波损耗构成。在磁滞损耗中,谐波造成的附件损耗是基本损耗的K倍 (11)在涡流损耗中,谐波造成的附件损耗是基本损耗的K倍,此时K系数为 (12)显然,谐波引起的涡流损耗增加值超过有
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 消除 谐波 节能 计算方法
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内