抽象函数的奇偶性周期性对称性(共6页).doc
《抽象函数的奇偶性周期性对称性(共6页).doc》由会员分享,可在线阅读,更多相关《抽象函数的奇偶性周期性对称性(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上抽象函数的周期性与对称性知识点梳理一、 抽象函数的对称性定理1. 若函数定义域为,且满足条件:,则函数的图象关于直线对称。推论1. 若函数定义域为,且满足条件:,则函数的图像关于直线对称。推论2. 若函数定义域为,且满足条件:),则函数的图像关于直线对称。总结:x的系数一个为1,一个为-1,相加除以2,可得对称轴方程推论3. 若函数定义域为,且满足条件:, 又若方程有个根,则此个根的和为。定理2. 若函数定义域为,且满足条件:(为常数),则函数的图象关于点对称。推论1. 若函数定义域为,且满足条件:成立,则 的图象关于点对称。推论2.若函数定义域为,且满足条件:(为常
2、数),则函数的图象关于点对称。总结:x的系数一个为1,一个为-1,f(x)整理成两边,其中一个的系数是为1,另一个为-1,存在对称中心。定理3.若函数 定义域为,则函数与两函数的图象关于直线对称(由可得)。推论1. 函数与函数的图象关于直线对称。推论2. 函数与函数的图象关于直线对称。定理4.若函数 定义域为,则函数与 的图象关于点对称。推论. 函数与函数图象关于点对称。二、抽象函数的周期性定理5.若函数 定义域为,且满足条件,则是以为周期的周期函数。推论1.若函数 定义域为,且满足条件,则是以为周期的周期函数。推论2.若函数满足条件 则是以为周期的周期函数。推论3. 若函数满足条件 则是以为
3、周期的周期函数。定理7.若函数的图象关于直线 与 对称,则是以为周期的周期函数。定理8.若函数的图象关于点与点 对称,则是以为周期的周期函数。定理9.若函数的图象关于直线与 点,则是以为周期的周期函数。总结:x的系数同为为1,具有周期性。1定义在R上的函数f(x)满足:f(x)f(x2)13,f(1)2,则f(99)()A13B2C. D.2已知奇函数f(x)在区间3,7上是增函数,且最小值为5,那么函数f(x)在区间7,3上()A是增函数且最小值为5B是增函数且最大值为5C是减函数且最小值为5D是减函数且最大值为53已知函数f(x1)是奇函数,f(x1)是偶函数,且f(0)2,则f(4)_.
4、4对于定义在R上的函数f(x),有下述四个命题,其中正确命题的序号为_若f(x)是奇函数,则f(x1)的图象关于点A(1,0)对称;若对xR,有f(x1)f(x1),则yf(x)的图象关于直线x1对称;若函数f(x1)的图象关于直线x1对称,则f(x)为偶函数;函数yf(1x)与函数yf(1x)的图象关于直线x1对称5已知定义域为R的函数f(x)是奇函数(1)求a、b的值;(2)若对任意的tR,不等式f(t22t)f(2t2k)0恒成立,求k的取值范围6设函数f(x)的定义域关于原点对称,且满足f(x1x2);存在正常数a,使f(a)1.求证:(1)f(x)是奇函数;(2)f(x)是周期函数,
5、并且有一个周期为4a.1、若函数对一切实数都有f (2x) = f (2x)则( )A.f (2)f (1) f(4)B.f (1)f (2) f(4)C.f (2)f (4) f(1)D.f (4)f (2) f(1)2、设函数y= f (x)定义在实数集R上,则函数y= f (x1)与y= f (1x)的图象关于( )对称。A.直线y=0B.直线 x=0C.直线 y=1D.直线 x=13、已知定义为R的函数满足,且函数在区间上单调递增.如果,且,则的值( )A. 恒小于0B.恒大于0C可能为0D可正可负4、函数yf(x)是定义在实数集R上的函数,那么yf(x4)与yf(6x)的图象之间(D
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 抽象 函数 奇偶性 周期性 对称性
限制150内