初中数学教学中数学思想方法的渗透(共8页).doc





《初中数学教学中数学思想方法的渗透(共8页).doc》由会员分享,可在线阅读,更多相关《初中数学教学中数学思想方法的渗透(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上初中数学教学中数学思想方法的渗透内容提要数学思想方法是数学学科的精髓,是数学素养的重要内容之一,学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。关键词:数学思想 新课程标准 渗透正文数学课程标准在对第三学段(七九年级)的教学建议中要求“对于重要的数学思想方法应体现螺旋上升的、不断深化的过程,不宜集中体现”。这就要求我们教师能在实际的教学过程中不断地发现、总结、渗透数学思想方法。一、渗透化归思想,提高学生解决问题的能力所谓“化归”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最
2、终使问题得到解决的一种思想方法。这体现了研究科学的一种基本思路,即把“不熟悉”迁移到“熟悉”的路子上去。我们也常把它称之为“转化思想”。可以说化归思想在本教材的数学教学中是贯穿始终的。例如:在教材有理数的减法、有理数的除法这两节内容中,实际上教材是通过“议一议”形式使学生在自主探究和合作交流的过程中,让学生经历把有理数的减法、除法转化为加法、乘法的过程,体验、学会并熟悉“转化一求解”的思想方法。我们可以注意到教材在出示了一组例题后,特别用卡通人语言的形式表明“减法可以转化为加法”、“除法可以转化为乘法”、“除以一个数等于乘以这个数的倒数”。这在主观上帮助了学生在探索时进行转化的过程,而在学生体
3、会到成功后客观上就渗透了学生化归的思想。值得注意的是这个地方虽然很简单,但我们教师不能因为简单而忽视它,实践告诉我们往往是越简单浅显的例子越能引来人们的认同,所以我们不能错过这一绝佳的提高学生的思维品质的机会。再如教材走进图形世界,它实际上是“空间与图形”的最基本部分。教材在编排设计上是围绕认识基本几何体、发展学生空间观念展开的,在过程上是让学生经历图形的变化、展开与折叠等数学活动过程的,在活动中引导学生认识常见的几何体以及点、线、面和一些简单的平面图形;通过对某些几何体的主视图、俯视图、左视图的认识,在平面图形与立体图形的转化中发展学生的空间观念。在七(上)教师教学参考资料用书中,教材在设计
4、思路上明确提出本章内容的处理方法是“先空间、后平图,再通过展开与折叠、从三个方向看数学活动进行平面图形与立体图形的转化。”这就要求我们必须在授课过程中注意图形的化归思想渗透。我个人认为在实际操作中,因为大部分学生在小学时就积累一定的感性处理方法,我们要注意的就是将其上升为理论高度,甚至于作出一般性的总结,如“在初中阶段绝大部分立体图形的问题都可以转化为平面图形的问题。”又如解无理方程转化为解有理方程,解分式方程转化为解整式方程,解“二元”方程转化为解“一元”方程,解多边形问题转化为解三角形问题等等。二、渗透数形结合的思想方法,提高学生的数形转化能力和迁移思维的能力数形结合思想是指将数与图形结合
5、起来解决问题的一种思维方式。著名的数学家华罗庚曾经说过:“数缺形时少直观,形少数时难入微。”这就是在强调把数和形结合起来考虑的重要性。把问题的数量关系转化为图形的性质,或者把图形的性质转化为数量关系,可以使复杂问题简单化、抽象问题具体化。在教材有理数里面用数轴上的点来表示有理数,就是最简单的数形结合思想的体现,结合数轴表示有理数,能帮助学生较好地理解有理数的绝对值、相反数等概念,以及进行两个有理数的大小比较。-1 a1b0例1如上图,在数轴上的两点A、B表示的数分别为a、b,则表示下列结论正确的是( )(A)(B)a-b0(C)2a+b0(D)a+b0分析:本题首先引导学生根据a、b在数轴上的
6、位置,得到a1、0b1。值得注意的是这一步所得就是由形到数的过程,应引起学生思想上的关注。然后可以利用取特殊值的方法(如:),一一带入求解,从而获得答案。这就是完全将图形迁移到数量上来。我们也可以继续利用图形,在数轴上作出诸如b,2a的长度,再利用线段的长短大小、加减和差来比较(A)(B)(C)(D)四个数量关系的正确与否。容易发现,不管是用哪一种方法,都是把图形和数量结合起来的解题,这种巧妙的结合可以使一些纷繁无绪,难以上手的问题获得简解。数形结合思想的渗透不能简单的通过解题来实现和灌输,应该落实在课堂教学的学习探索过程中,如在相反数这节课,先从互为相反数的两数在数轴上的特征,即它们分别位于
7、原点的两旁,且与原点距离相等的实例出发,揭示这两数的几何形象。充分利用数轴帮助思考,把一个抽象的数的概念,化为直观的几何形象。在这种情况下给出互为相反数的定义:只有符号不同的两个数称互为相反数。特别地规定:零的相反数是零。显得自然亲切,水到渠成。同时也让学生在数形结合的思想方法的引领下感受到了成功,初步领略和尝试了它的功用,是一个非常好的渗透背景。又如,在教材平面图形的认识(一)里我们会遇见这样的问题:已知线段AB,在BA的延长线上取一点C使CA=3AB。(1)线段CB是线段AB的几倍?(2)线段AC是线段CB的几分之几?这个题目的呈现方式是图形式,而设问内容却是一个数量问题。若学生不画图,则
8、不易得到其数量关系,但学生只要把图画出,其数量关系就一目了然。此题的出题意图即为数形结合的体现。再看例2:完成下列计算:1+3=?1+3+5=?1+3+5+7=?1+3+5+7+9=?根据计算结果,探索规律。* * * * * * * * * * * * *97531* * * *在这题的教学中,首先应让学生思考:从上面这些算式中你能发现什么?让学生经历观察(每个算式和结果的特点)、比较(不同算式之间的异同),归纳(可能具有的规律)、提出猜想的过程。在探索过程中可以鼓励学生进行相互合作交流,也可以提供如下的帮助:列出一个点阵,用图形的直观来帮助学生进行猜想。这就是典型的把数量问题转化到图形中来
9、完成的题型。再如,在学习“函数”知识的时候,更是借助于函数的图象来探讨函数的知识,这是数形结合思想的最生动的应用。所以,我们一定要通过课堂的教学、习题的讲解使学生充分地理解数中有形、形中有数、数形是紧密联系的,从而得到数形之间的对应关系,并引导学生应用数形结合的思想方法学习数学知识、解决数学问题。三、渗透分类讨论的思想方法,培养学生全面观察事物、灵活处理问题的能力。当被研究的问题包含多种可能的情况不能一概而论时,就要按照可能出现的各种情况进行分类讨论,从而得出各种情况下的结论,这种处理问题的思维方法就是分类讨论思想。在渗透分类讨论思想的过程中,我认为首要的是分类。要能培养学生分类的意识,然后才
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 教学 思想 方法 渗透

限制150内