细说圆中的分类讨论题------之两解情况(考试-拒绝遗漏)(共4页).doc
《细说圆中的分类讨论题------之两解情况(考试-拒绝遗漏)(共4页).doc》由会员分享,可在线阅读,更多相关《细说圆中的分类讨论题------之两解情况(考试-拒绝遗漏)(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上细说圆中的分类讨论题-之两解情况由于圆既是轴对称图形,又是中心对称图形,还具有旋转不变性,有许多问题需要分类讨论,分类讨论是一种同学们应该掌握并且相当重要的数学思想,对于锻炼同学们的缜密思维和分析问题能力异常的重要,但同学们在遇到分类讨论题时易出现漏解情况,这就要求同学们在解题时一要读懂题意,明白题干的要求,二要有顺序步骤的做。先从几个方面举例说明如下:一、根据点与圆的位置分类例、点P是圆O所在平面上一定点,点P到圆上的最大距离和最短距离分别为和,则该圆的半径为。分析:根据点和圆的位置关系,这个点P与圆有两种位置关系。分为点在圆内和点在圆外两种情况。解:过点P和圆心O
2、作直线分别与圆O相交于A、B两点。PA、PB分别表示圆上各点到点P的最长距离和最短距离。 图1 图2(1)当点P在圆内时,如图1所示,直径;(2)当点P在圆外时,如图2所示,直径;所以,圆O的直径为2或6。二、三角形与圆心的位置关系例:已知内接于圆O,则的度数为_。分析:因点A的位置不确定。所以点A和圆心O可能在BC的同侧,也可能在BC的异侧。也可分析为圆心在的内部和外部两种情况。解:(1)当点A和圆心O在BC的同侧时,如图3, 图3 图4(2)当点A和圆心O在BC的异侧时,如图4,所以的度数是或。练习:已知圆内接中,AB=AC,圆心O到BC的距离为3cm,圆的半径为6cm,求腰长AB。(两种
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 细说 中的 分类 论题 情况 考试 拒绝 遗漏
限制150内