自考-概率论与数理统计(共11页).doc





《自考-概率论与数理统计(共11页).doc》由会员分享,可在线阅读,更多相关《自考-概率论与数理统计(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第一章 统计量及其抽样分布6.1总体与样本6.1.1总体与个体在一个统计问题中,我们把研究对象的全体称为总体,构成总体的每个成员称为个体。对多数实际问题。总体中的个体是一些实在的人或物。比如,我们要研究某大学的学生身高情况,则该大学的全体学生构成问题的总体,而每一个学生即是一个个体。事实上,每个学生有许多特征:性别、年龄、身高、体重、民族、籍贯等。而在该问题中,我们关心的只是该校学生的身高如何,对其他的特征暂不予以考虑。这样,每个学生(个体)所具有的数量指标值身高就是个体,而将所有身高全体看成总体。这样一来,若抛开实际背景,总体就是一堆数,这堆数中有大有小,有的出现的
2、机会多,有的出现的机会少,因此用一个概率分布去描述和归纳总体是恰当的。从这个意义上看,总体就是一个分布,而其数量指标就是服从这个分布的随机变量。以后说“从总体中抽样”与“从某分布中抽样”是同一个意思。例6-1考察某厂的产品质量,将其产品只分为合格品与不合格品,并以0记合格品,以1记不合格品,则总体该厂生产的全部合格品与不合格品由0或1组成的一堆数。若以p表示这堆数中1的比例(不合格品率),则该总体可由一个二点分布表示:不同的p反映了总体间的差异。例如,两个生产同类产品的工厂的产品总体分布为:我们可以看到,第一个工厂的产品质量优于第二个工厂。实际中,分布中的不合格品率是未知的,如何对之进行估计是
3、统计学要研究的问题。6.1.2样本为了了解总体的分布,我们从总体中随机地抽取n个个体,记其指标值为x1,x2,xn,则x1,x2,xn称为总体的一个样本,n称为样本容量,或简称样本量,样本中的个体称为样品。我们首先指出,样本具有所谓的二重性:一方面,由于样本是从总体中随机抽取的,抽取前无法预知它们的数值,因此,样本是随机变量,用大写字母X1,X2,Xn表示;另一方面,样本在抽取以后经观测就有确定的观测值,因此,样本又是一组数值。此时用小写字母x1,x2,xn表示是恰当的。简单起见,无论是样本还是其观测值,本书中样本一般均用x1,x2,xn表示,读者应能从上下文中加以区别。例6-2啤酒厂生产的瓶
4、装啤酒规定净含量为640g,由于随机性,事实上不可能使得所有的啤酒净含量均为640g ,现从某厂生产的啤酒中随机抽取10瓶测定其净含量,得到如下结果: 641635640637642638645643639640这是一个容量为10的样本的观测值。对应的总体为该厂生产的瓶装啤酒的净含量。从总体中抽取样本时,为使样本具有代表性,抽样必须是随机抽样。通常可以用随机数表来实现随机抽样。还要求抽样必须是独立的,即每次的结果互不影响。在概率论中,在有限总体(只有有限个个体的总体)中进行有放回抽样,是独立的随机抽样;然而,若为不放回抽样,则是不独立的抽样。但 当总体容量N很大但样本容量n较小时,不放回抽样可
5、以近似地看做放回抽样,即可近似看做独立随机抽样。下面,我们假定抽样方式总满足独立随机抽样的条件。从总体中抽取样本可以有不同的抽法,为了能由样本对总体做出较可靠的推断,就希望样本能很好地代表总体。这就需要对抽样方法提出一些要求,最常用的 “简单随机抽样”有如下两个要求:(1)样本具有随机性,即要求总体中每一个个体都有同等机会被选入样本,这便意味着每一样品xi与总体X有相同的分布。(2)样本要有独立性,即要求样本中每一样品的取值不影响其他样品的取值,这意味着x1,x2,xn相互独立。用简单随机抽样方法得到的样本称为简单随机样本,也简称样本。除非特别指明,本书中的样本皆为简单随机样本。于是,样本x1
6、,x2,xn可以看成是相互独立的具有同一分布的随机变量,其共同分布即为总体分布。 设总体X具有分布函数F(x), x1,x2,xn为取自该总体的容量为n的样本,则样本联合分布函数为:若总体具有密度函数f(x),则样本的联合密度函数为若总体X为离散型随机变量,则样本的(联合)概率函数为显然,通常说的样本分布是指多维随机变量(x1,x2,xn)的联合分布。例6-3为估计一物件的重量,用一架天平重复测量n次,得样本x1,x2,xn,由于是独立重复测量,x1,x2,xn是简单随机样本。总体的分布即x1的分布(x1,x2,xn分布相同)。由于称量误差是均值(期望)为零的正态变量,所以x1可认为服从正态分
7、布N(,2)(X1等于物件重量)加上称量误差,即x1的概率密度为这样,样本分布密度为。 例6-4设某种电灯泡的寿命X服从指数分布E(),其概率密度为:则来自这一总体的简单随机样本x1,x2,xn的样本分布密度为例6-5考虑电话交换台一小时内的呼唤次数X。求来自这一总体的简单随机样本x1,x2,xn的样本分布。解由概率论知识,X服从泊松分布P(),其概率函数,(其中x是非负整数0,1,2,k,中的一个)。从而,简单随机样本x1,x2,xn的样本分布为:6.2统计量及其分布6.2.1 统计量与抽样分布样本来自总体,样本的观测值中含有总体各方面的信息,但这些信息较为分散,有时显得杂乱无章。为将这些分
8、散在样本中有关总体的信息集中起来以反映总体的各种特征,需要对样本进行加工。最常用的加工方法是构造样本的函数,不同的函数反映总体的不同特征。 定义6-1 设x1,x2,xn为取自某总体的样本,若样本函数TT(x1,x2,xn)中不含有任何未知参数,则称T为统计量。统计量的分布称为抽样分布。按照这一定义,若x1,x2,xn为样本,则,都是统计量,而当,2未知时, 等均不是统计量。6.2.2样本均值及其抽样分布 定义6-2 设x1,x2,xn为取自某总体的样本,其算术平均值称为样本均值,一般用表示,即。例6-6 某单位收集到20名青年人某月的娱乐支出费用数据:7984 8488 92 93 94 9
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自考 概率论 数理统计 11

限制150内