导数经典练习题及答案(共67页).doc
《导数经典练习题及答案(共67页).doc》由会员分享,可在线阅读,更多相关《导数经典练习题及答案(共67页).doc(67页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上1设函数f(x)在处可导,则等于A B C D2若,则等于 A B C3 D23若函数f(x)的导数为f(x)=-sinx,则函数图像在点(4,f(4)处的切线的倾斜角为A90 B0 C锐角 D钝角4对任意x,有,f(1)=-1,则此函数为A B C D5设f(x)在处可导,下列式子中与相等的是(1); (2); (3) (4).A(1)(2) B(1)(3) C(2)(3) D(1)(2)(3)(4)6若函数f(x)在点处的导数存在,则它所对应的曲线在点处的切线方程是_.7已知曲线,则_.8设,则_.9在抛物线上依次取两点,它们的横坐标分别为,若抛物线上过点P的切线
2、与过这两点的割线平行,则P点的坐标为_.10曲线在点A处的切线的斜率为3,求该曲线在A点处的切线方程.11在抛物线上求一点P,使过点P的切线和直线3x-y+1=0的夹角为.12判断函数在x=0处是否可导.13求经过点(2,0)且与曲线相切的直线方程. 同步练习X030131函数y=f(x)在x=x0处可导是它在x=x0处连续的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件2在曲线y=2x21的图象上取一点(1,1)及邻近一点(1+x,1+y),则 等于A4x+2x2B4+2xC4x+x2D4+x3若曲线y=f(x)在点(x0,f(x0)处的切线方程为2x+y1=0,则Af(x
3、0)0Bf(x0)0) B (x0) C(x0)D (x0)4f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f(x)=g(x),则f(x)与g(x)满足Af(x)=g(x)Bf(x)g(x)为常数函数Cf(x)=g(x)=0Df(x)+g(x)为常数函数5两车在十字路口相遇后,又沿不同方向继续前进,已知A车向北行驶,速率为30 km/h,B车向东行驶,速率为40 km/h,那么A、B两车间直线距离的增加速率为A50 km/h B60 km/h C80 km/h D65 km/h6细杆AB长为20 cm,AM段的质量与A到M的距离平方成正比,当AM=2 cm时,AM段质量
4、为8 g,那么,当AM=x时,M处的细杆线密度(x)为A2xB4x C3xD5x7曲线y=x4的斜率等于4的切线的方程是_8设l1为曲线y1=sinx在点(0,0)处的切线,l2为曲线y2=cosx在点(,0)处的切线,则l1与l2的夹角为_9过曲线y=cosx上的点()且与过这点的切线垂直的直线方程为_10在曲线y=sinx(0x0)的导数为0,那么x等于AaBaCaDa22函数y=的导数为Ay=By=Cy=Dy=3.若则y= .4.若则y= .5.若则y= .6已知f(x)=,则f(x)=_7已知f(x)=,则f(x)=_8已知f(x)=,则f(x)=_9求过点(2,0)且与曲线y=相切的
5、直线的方程10.质点的运动方程是求质点在时刻t=4时的速度. 同步练习 X030411函数y=的导数是A B C D2已知y=sin2x+sinx,那么y是A仅有最小值的奇函数 B既有最大值,又有最小值的偶函数C仅有最大值的偶函数 D非奇非偶函数3函数y=sin3(3x+)的导数为A3sin2(3x+)cos(3x+) B9sin2(3x+)cos(3x+)C9sin2(3x+) D9sin2(3x+)cos(3x+)4.若y=(sinx-cosx,则y= .5. 若y=,则y= .6. 若y=sin3(4x+3),则y= .7函数y=(1+sin3x)3是由_两个函数复合而成8曲线y=sin
6、3x在点P(,0)处切线的斜率为_9.求曲线处的切线方程.10. 求曲线处的切线方程.11已知函数y=(x)是可导的周期函数,试求证其导函数y=f(x)也为周期函数同步练习 X030421函数y=cos(sinx)的导数为Asin(sinx)cosxBsin(sinx)Csin(sinx)cosxDsin(cosx)2函数y=cos2x+sin的导数为A2sin2x+B2sin2x+C2sin2x+D2sin2x3过曲线y=上点P(1,)且与过P点的切线夹角最大的直线的方程为A2y8x+7=0B2y+8x+7=0C2y+8x9=0D2y8x+9=04函数y=xsin(2x)cos(2x+)的导
7、数是_5函数y=的导数为_6函数y=cos3的导数是_ 7.已知曲线y= + (100-x) (0) 在点M 处有水平切线, 8若可导函数f(x)是奇函数,求证:其导函数f(x)是偶函数9用求导方法证明:+n=n2n1同步练习 X030511函数y=ln(32xx2)的导数为ABCD2函数y=lncos2x的导数为Atan2xB2tan2xC2tanxD2tan2x3函数y=的导数为A2xBCD4在曲线y=的切线中,经过原点的切线为_5函数y=log3cosx的导数为_6.函数y=x2lnx的导数为 .7. 函数y=ln(lnx)的导数为 .8. 函数y=lg(1+cosx)的导数为 .9.
8、求函数y=ln的导数10. 求函数y=ln的导数12求函数y=ln(x)的导数同步练习 X030521下列求导数运算正确的是A(x+)=1+ B(log2x)=C(3x)=3xlog3e D(x2cosx)=2xsinx2函数y=(a0且a1),那么y为AlnaB2(lna)C2(x1)lnaD(x1)lna3函数y=sin32x的导数为A2(cos32x)32xln3B(ln3)32xcos32xCcos32xD32xcos32x4设y=,则y=_5函数y=的导数为y=_6曲线y=exelnx在点(e,1)处的切线方程为_7.求函数y=e2xlnx 的导数.8求函数y=xx(x0)的导数9设
9、函数f(x)满足:af(x)+bf()=(其中a、b、c均为常数,且|a|b|),试求f(x)同步练习 x030611若f(x)在a,b上连续,在(a,b)内可导,且x(a,b)时,f(x)0,又f(a)0Bf(x)在a,b上单调递增,且f(b)0Cf(x)在a,b上单调递减,且f(b)0Ba0)的单调减区间是A(2,+)B(0,2) C(,+)D(0,)5函数y=sinxcos2x在(0,)上的减区间为A(0,arctan)B(arctan)C(0,)D(arctan)6函数y=xlnx在区间(0,1)上是A单调增函数 B单调减函数C在(0,)上是减函数,在(,1)上是增函数D在(0,)上是
10、增函数,在(,1)上是减函数7函数f(x)=cos2x的单调减区间是_8函数y=2x+sinx的增区间为_9函数y=的增区间是_10函数y=的减区间是_11已知0x0)若f(x)的单调递减区间是(0,4). (1)求k的值; (2)当k313试证方程sinx=x只有一个实根14三次函数f(x)=x33bx+3b在1,2内恒为正值,求b的取值范围同步练习 X030711下列说法正确的是A当f(x0)=0时,则f(x0)为f(x)的极大值B当f(x0)=0时,则f(x0)为f(x)的极小值C当f(x0)=0时,则f(x0)为f(x)的极值D当f(x0)为函数f(x)的极值且f(x0)存在时,则有f
11、(x0)=02下列四个函数,在x=0处取得极值的函数是y=x3y=x2+1y=|x|y=2xAB CD3函数y=的极大值为A3B4 C2D54函数y=x33x的极大值为m,极小值为n,则m+n为A0B1 C2D45y=ln2x+2lnx+2的极小值为Ae1B0C1D16y=2x33x2+a的极大值为6,那么a等于A6B0C5D17函数f(x)=x33x2+7的极大值为_8曲线y=3x55x3共有_个极值9函数y=x3+48x3的极大值为_;极小值为_10函数f(x)=x的极大值是_,极小值是_11若函数y=x3+ax2+bx+27在x=1时有极大值,在x=3时有极小值,则a=_,b=_12已知
12、函数f(x)=x3+ax2+bx+c,当x=1时,取得极大值7;当x=3时,取得极小值求这个极小值及a、b、c的值13函数f(x)=x+b有极小值2,求a、b应满足的条件14设y=f(x)为三次函数,且图象关于原点对称,当x=时,f(x)的极小值为1,求函数的解析式同步练习 X030811下列结论正确的是 A在区间a,b上,函数的极大值就是最大值B在区间a,b上,函数的极小值就是最小值C在区间a,b上,函数的最大值、最小值在x=a和x=b时到达D在区间a,b上连续的函数f(x)在a,b上必有最大值和最小值2函数在1,5上的最大值和最小值是 Af(1),f(3) Bf(3),f(5) Cf(1)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 经典 练习题 答案 67
限制150内