傅里叶系数的推导(共5页).doc





《傅里叶系数的推导(共5页).doc》由会员分享,可在线阅读,更多相关《傅里叶系数的推导(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上傅里叶级数的数学推导但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。一打开信号与系统、锁相环原理等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。如下就是傅里叶级数的公式:不客气地说,这个公式可以说是像“臭婆娘的裹脚布又臭又长”,而且来历相当蹊跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。单看那个式,就是把周期函数f(t)描述成一个常数系数a0、及1倍的sin和cos函数、2倍的sin和cos函数等、到n倍的sin和cos函
2、数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即式,不过为了积分方便,积分区间一般设为-, ,也相当一个周期T的宽度。能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢?下面来详细解释一下此公式的得出过程:、把一个周期函数表示成三角级数:首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为:f(x)=A sin(t+)这里t表示时间,A表示振幅,为角频率,为初相(与考察时设置原点位置有关)。然而,世界上许多周期信号并非正弦函数那么简单,如方波、三
3、角波等。傅叶里就想,能否用一系列的三角函数An sin(nt+)之和来表示那个较复杂的周期函数f(t)呢?因为正弦函数sin可以说是最简单的周期函数了。于是,傅里叶写出下式:(关于傅里叶推导纯属猜想)这里,t是变量,其他都是常数。与上面最简单的正弦周期函数相比,5式中多了一个n,且n从1到无穷大。这里f(t)是已知函数,也就是需要分解的原周期函数。从公式5来看,傅里叶是想把一个周期函数表示成许多正弦函数的线性叠加,这许许多多的正弦函数有着不同的幅度分量(即式中An)、有不同的周期或说是频率(是原周期函数的整数倍,即n)、有不同的初相角(即),当然还有一项常数项(即A0)。要命的是,这个n是从1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 傅里叶 系数 推导

限制150内