2019届高考数学专题-高考培优20讲-14外接球(共11页).docx
《2019届高考数学专题-高考培优20讲-14外接球(共11页).docx》由会员分享,可在线阅读,更多相关《2019届高考数学专题-高考培优20讲-14外接球(共11页).docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上培优点十四 外接球1正棱柱,长方体的外接球球心是其中心例1:已知各顶点都在同一球面上的正四棱柱的高为,体积为,则这个球的表面积是( )ABCD【答案】C【解析】,故选C2补形法(补成长方体)例2:若三棱锥的三个侧面两两垂直,且侧棱长均为,则其外接球的表面积是 【答案】【解析】,3依据垂直关系找球心例3:已知三棱锥的四个顶点均在同一个球面上,底面满足,若该三棱锥体积的最大值为3,则其外接球的体积为( )ABCD【答案】D【解析】因为是等腰直角三角形,所以外接球的半径是,设外接球的半径是,球心到该底面的距离,如图,则,由题设,最大体积对应的高为,故,即,解之得,所以外接球
2、的体积是,故答案为D对点增分集训一、单选题1棱长分别为2、的长方体的外接球的表面积为( )ABCD【答案】B【解析】设长方体的外接球半径为,由题意可知:,则:,该长方体的外接球的表面积为本题选择B选项2设三棱柱的侧棱垂直于底面,所有棱的长都为,顶点都在一个球面上,则该球的表面积为( )A12B28C44D60【答案】B【解析】设底面三角形的外接圆半径为,由正弦定理可得:,则,设外接球半径为,结合三棱柱的特征可知外接球半径,外接球的表面积本题选择B选项3把边长为3的正方形沿对角线对折,使得平面平面,则三棱锥的外接球的表面积为( )ABCD【答案】C【解析】把边长为3的正方形沿对角线对折,使得平面
3、平面,则三棱锥的外接球直径为,外接球的表面积为,故选C4某几何体是由两个同底面的三棱锥组成,其三视图如下图所示,则该几何体外接球的面积为( )ABCD【答案】C【解析】由题可知,该几何体是由同底面不同棱的两个三棱锥构成,其中底面是棱长为的正三角形,一个是三条侧棱两两垂直,且侧棱长为的正三棱锥,另一个是棱长为的正四面体,如图所示:该几何体的外接球与棱长为a的正方体的外接球相同,因此外接球的直径即为正方体的体对角线,所以,所以该几何体外接球面积,故选C5三棱锥的所有顶点都在球的表面上,平面,则球的表面积为( )ABCD【答案】D【解析】因为,所以,因此三角形外接圆半径为,设外接球半径为,则,故选D
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 高考 数学 专题 20 14 外接 11
限制150内