复变函数习题答案第2章习题详解(共13页).doc
《复变函数习题答案第2章习题详解(共13页).doc》由会员分享,可在线阅读,更多相关《复变函数习题答案第2章习题详解(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第二章习题详解1 利用导数定义推出:1) (为正整数)解: 2)解: 2 下列函数何处可导?何处解析?1)解:设,则, ,都是连续函数。只有,即时才满足柯西黎曼方程。在直线上可导,在复平面内处处不解析。2)解:设,则, ,都是连续函数。只有,即时才满足柯西黎曼方程。在直线上可导,在复平面内处处不解析。3)解:设,则, ,都是连续函数。只有且,即时才满足柯西黎曼方程。在点处可导,在复平面内处处不解析。4)解:设,则, ,都是连续函数。完全满足柯西黎曼方程。在复平面内处处可导,在复平面内处处解析。3 指出下列函数的解析性区域,并求出其导数。1)解:,在复平面内处处解析。2
2、)解:,在复平面内处处解析。3)解:,在复平面内除点外处处解析。4) (,中至少有一个不为)解: 当,则当时,在复平面内除点外处处解析。当时,则,在复平面内处处解析。 4 求下列函数的奇点:1)解:令,解得,。故有、三个奇点。2)解:令,解得,。故有、三个奇点。5 复变函数的可导性与解析性有什么不同?判断函数的解析性有哪些方法?解:复变函数的可导性是函数在某一点的局部性质,而解析性是函数在一个区域内的整体性质。判断函数的解析性有两种法。一是用定义,利用函数的可导性判断解析性;二是用定理:函数在其定义域内解析和在内点可微,并且满足柯西黎曼方程。6 判断下列命题的真假,若真,请给以证明;若假,请举
3、例说明。1) 如果在连续,那末存在;解:假命题。例如,在复平面内任意一点都连续,但不满足柯西黎曼方程,故不存在。2) 如果存在,那末在解析;解:假命题。例如,在点可导,但在点不解析。3) 如果是的奇点,那末在不可导;解:假命题。例如,在复平面内处处不解析,因此处处是奇点,但在上的点均可导。4) 如果是和的一个奇点,那末也是和的奇点;解:假命题。例如,与在复平面内处处不解析,即复平面内任意一点都是与的奇点。但在复平面内处处解析,即在复平面内没有奇点。5) 如果和可导(指偏导数存在),那末亦可导;解:假命题。例如,设,则,均可导,但不满足柯西黎曼方程,因此不可导。6) 设在区域内是解析的。如果是实
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 习题 答案 详解 13
限制150内