历届国际物理奥林匹克竞赛试题与解答(共5页).doc
《历届国际物理奥林匹克竞赛试题与解答(共5页).doc》由会员分享,可在线阅读,更多相关《历届国际物理奥林匹克竞赛试题与解答(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上历届国际物理奥林匹克竞赛试题与解答第届(1972年于罗马尼亚的布加勒斯特)【题】给定三个圆柱,它们的长度、外径和质量均相同。第一个是实心圆柱;第二个是空心圆筒,壁有一定厚度;第三个是同样壁厚的圆筒,但两端用薄片封闭,里面充满一种密度与筒壁相同的液体。如将它们放在倾角为的斜面上,如图6.1所示,求出并比较这些圆柱的线加速度。研究光滑滚动与又滚又滑两种情况。圆柱与斜面的摩擦系数为,液体与筒壁之间的摩擦可以忽略。解:沿斜面方向作用在圆柱上的力是:作用于质心重力的分量mg sina和作用于接触点的摩擦力S,如图6.1所示。产生的加速度a :mamg sinaS纯滚动时的角加速
2、度为:转动的运动方程为:以上方程组的解为:()当S达到最大可能值mg cosa时,也就到了纯滚动的极限情形,这时:即维持纯滚动的极限条件为()下面我们来研究三个圆柱体的纯滚动情形。()实心圆柱的转动惯量为从()式和()式分别得到,tan ah角加速度为:()设空心圆筒壁的密度是实心圆柱密度的n倍。因已知圆柱的质量是相等的,故可以算出圆筒空腔的半径r:即转动惯量为:由()式和()式分别算出:,角加速度为:()对充满液体的圆筒,因液体与筒壁之间无摩擦力,故液体不转动。总质量为m,但转动惯量只需对圆筒壁计算:由()式和()式分别算出:,角加速度为:现在比较三个圆柱体的运动特点:线加速度和角加速度之比
3、为:1极限角正切之比为:1如果斜面倾角超过极限角,则圆柱又滑又滚。此时三个圆柱体的摩擦力均为mg cosa,故线加速度相同,为:ag(sinamcos a)角加速度由给出,但转动惯量在三种情况下各不相同。因此,若圆柱体又滚又滑,则三种情况下的角加速度分别为:【题】有两个底面积为1dm2的圆筒,如图6.2所示,左方圆筒装有一种气体,气体的质量4g,体积22.4L,压强1atm,温度00C。右方圆筒装有同种气体,气体的质量7.44g,体积22.4L,压强1atm,温度00C。左方圆筒筒壁绝热,右方圆筒靠一个大热库维持温度00C。整个系统在真空中。放开活塞,它移动了5dm后达到平衡并静止。试问右方圆
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 历届 国际 物理 奥林匹克 竞赛 试题 解答
限制150内