变力做功的求解方法(共10页).doc
《变力做功的求解方法(共10页).doc》由会员分享,可在线阅读,更多相关《变力做功的求解方法(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上变力做功的求解方法2 用图像法求变力做功功是描写力对空间的积累作用的,它的大小可以用作用力随位移变化的关系曲线,如图2.2.1力-位移图象下的一块图形面积的大小来表示。如图甲所示表示恒力的力-位移图像,横坐标表示力F在位移方向上的分量,功W的数值等于直线下方画有斜线部分的面积如图乙所示表示变力的力-位移图像,曲线下方画有斜线部分的面积就表示变力所做的功,它近似地等于成阶梯形的小矩形面积的总和。图2.2.1 力-位移图象在F-x图象中,图线和横轴所围成的面积即表示力所做的功,即功是力对位移的积累效应。如果已知在位移x内F随位移变化的图象,可以根据图象与x轴所围成的面积求
2、出变力F对物体做的功,这种求功的方法称为图像法。 线性变化的力是一种特殊情况的变力,作用力是位移的线性函数,它的力-位移图象是一条倾斜的直线,直线下方的梯形或三角形的面积表示为线性变力的大小。在功的求解问题中,当已知力与位移的函数关系或力与位移的关系曲线时,就可以用图像法求解。如重心位置变化时的重力所做的功;弹簧伸缩时弹力所做的功;打击木桩时的阻力所做的功,它们的力与位移都成线性关系:。在求这些力做的功时,由于很容易找到力和位移的函数关系,作出图线,可以用图像法很简单的进行求解。利用图像法求解功的思路是:首先确定研究对象,进行受力分析,找出力与位移之间的函数关系式;根据题意及关系式作出图线;最
3、后利用几何关系求出图线和坐标轴围成的面积,即为所求力的功。例1:质量为m的质点在外力的作用下沿轴运动,已知时质点位于原点,且初速度为零,设外力F随距离性地减小,且时,;当时,。试求质点从运动到处的过程中,力F对质点所做功和质点在处的速率1。分析与解:当时,并且外力随距离增大而减小;又当时,。所以当质点从运动到处的过程中,变力F所做的功转化为质点运动的动能。因此我们用图像发求变力所做的功,再则求出质点在处的速度。由于力F随距离的增加而减小,所以建立以轴为横轴,轴为竖轴的平面坐标系,如图所示:图2.2.2 例1示意图设变力F做功为W,质点运动到处的速度为,所以:图中阴影部分的面积对应的就是变力F做
4、的功,即又由于变力F所做的功转化为质点的动能,已知质点的质量为m;则: 解得力F对质点所做的功为:质点在处的速度为:由此可见,当力和位移成线性关系时,可用图像法简单、直观的求解变力做功。3 从能量转化的角度求变力做功贯穿功和能全部的知识重点是“功是能量变化的量度”。功是过程量,能是状态量,不同的过程决定不同的状态变化,或者说由于不同性质的力做功引起不同性质能量的变化。所以在求解变力做功时,可以把问题转化为求解动能的改变量或者机械能的改变量。3.1 用动能定理求变力做功质点在一定时间的运动过程中,其动能改变的数值等于在同样时间内外力对该质点做的功。因此,在功的计算中,如果一个物体受到几个力的作用
5、,除了变力外,其他力对物体不做功或做功之和为零,就可以利用动能定理直接求解变力做的功,即由其做功的结果-动能的变化求变力F的功: 。动能定理求变力做功适用于多个力做功,但只有一个力是变力,其余的都是恒力,而且这些恒力所做的功又容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功2。如在人通过定滑轮拉物体的过程中,求绳对物体的拉力所做的功。物体始、末状态的动能已知为零,以绳为研究对象,受到人的拉力和物体对绳的拉力,根据动能定理即可求得绳对物体的拉力所做的功等于人对绳的拉力所做的功。又如要求人通过定滑轮拉物体的过程中滑动摩擦力做的功,先求出其它力如重力、支持力、拉
6、力等做的功,再找出始、末状态的动能,利用动能定理即可求解。利用动能定理求解的思路如下:首先明确研究对象,对研究对象做受力分析;再确定物理过程,研究在所确定的物理过程中那些力做功,并求出外力做功的代数和;再确定研究过程的初、末状态的动能;最后根据动能定理列方程,结合其它有关规律分析求解。例2:如图所示,用同种材料制成的一个轨道,A段为1/4圆弧,半径为R,水平放置的BC段长为R,一小物块质量为m,与轨道间动摩擦因数为,当它从轨道顶端A点由静止下滑时恰好运动到C点静止,求物块在AB段克服摩擦力做的功3? 图3.1 例2示意图分析:物块由A运动到B的过程中共受三个力作用:重力G、支持力N,摩擦力f。
7、由于轨迹是弯曲的,支持力和摩擦力均为变力,但支待力时刻垂直速度方向,故支持力不做功,因而该过程中只有重力和摩擦力做功。解答:设在B点时速度为,A点时速度为,由动能定理知,其中有,。所以 : (1)物块由B运动到C的过程中,重力和支持力不做功,.仅有摩擦力做功,设为。由动能定理得: (2)又 . (3)由(1)(2)(3)可得:。在求解变力做功的问题中,利用动能定理只需考查一个物体运动过程的始末两个状态有关物理量的关系,对过程的细节不予细究,与牛顿定律观点比较,这正是它的方便之处。3.2 用功能原理求变力做功功能原理是力学中的基本原理之一,它描述了物体系统的机械能增量等于一切外力非保守力对系统所
8、作的总功和系统内非保守力所作的总功的代数和。即任何物体,系统外力非保守力对其作的总功+系统内非保守力做的总功 = 系统的机械能(动能与势能之和)的增量。 (3.5)该原理对一切惯性参考系都成立,所以求变力做的功可以根据功能关系求解。只有非保守力做功,才能使机械能发生变化。起重机提升重物,非保守力做了正功,才使重物的动能和势能增加,若重物上升一定高度又逐步匀速下降,钓钩对重物做负功,重力势能减小。保守力做功会引起系统动能放入改变,但不会引起系统机械能的改变。 若多个力对系统做功,如果这些力中只有一个变力做功,且其它的力所做的功及系统的机械能增量都比较容易解时,就可用功能原理求得变力所做的功。如在
9、用力F匀速提起一物体的过程中,要求F做的功时,由于物体的重力势能要变化,求出它的变化量,即为F所做的功。人通过定滑轮匀速拉物体的过程中,求人做的功,物体重力势能的增量即为人做的功。功能原理求解功的思路:首先确定研究对象是一物体或系统,分析受力情况,确定研究过程的初、末状态的机械能,最后列方程求解。例3:在下图中,劲度系数为k的轻弹簧下端固定,沿斜面放置,斜面倾角为。质量为m的物体从与弹簧上端相距为a的位置以初速度沿斜面下滑并使弹簧最多压缩b。求物体与斜面之间的摩擦因数4。图3.2 例3示意图解析:将物体、弹簧、地球视为一个系统,重力和弹力是保守内力,正压力与物体位移垂直不做功,只有摩擦力为非保
10、守内力且做功。根据系统的功能原理,摩擦力做的功等于系统机械能的增量,并注意到弹簧最大压缩时物体的速度为零,即有以及可以解得从功能关系的角度来审视一个物理过程,分析这一过程中各个力做功情况,及其相应的能量转化情况,是一条重要的解题思路。特别是在一个复杂的运动过程中,只要选好始、末状态,并把握好过程中各力所做的功,再用功能关系列式,就能化繁为简,化难为易。其实,功能原理与动能定理并无本质的不同,它们的区别仅在于功能原理中引入了势能而无需考虑内保守力的功,这正是功能原理的优点。3.3 用求恒定功率下的变力做功功率的定义式变形公式中没有要求恒力条件,所以利用此式只要给出功率与过程经历的时间都可以计算出
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 做功 求解 方法 10
限制150内