二次函数讲义-详细暑期(共9页).doc
《二次函数讲义-详细暑期(共9页).doc》由会员分享,可在线阅读,更多相关《二次函数讲义-详细暑期(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 第一讲 二次函数的定义知识点归纳:二次函数的定义:一般地,如果是常数,那么叫做的二次函数. 二次函数具备三个条件,缺一不可:(1)是整式方程;(2)是一个自变量的二次式;(3)二次项系数不为0考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式例1、 函数y=(m)x2x1是二次函数,则m= 例2、 下列函数中是二次函数的有( ) y=x;y=3(x1)22;y=(x3)22x2;y=xA1个 B2个 C3个 D4个例3、已知函数y=ax2bxc(其中a,b,c是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数例
2、4、某商场将进价为40元的某种服装按50元售出时,每天可以售出300套据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场将售价定为x,请你得出每天销售利润y与售价的函数表达式例5 、如图,正方形ABCD的边长为4,P是BC边上一点,QPAP交DC于Q,如果BP=x,ADQ的面积为y,用含x的代数式表示y例6已知:如图,在RtABC中,C=90,BC=4,AC=8点D在斜边AB上,分别作DEAC,DFBC,垂足分别为E、F,得四边形DECF设DE=x,DF=y(1)AE用含y的代数式表示为:AE= ;(2)求y与x之间的函数表达式,并求出x的取值范围;(3)设四边形DECF的面积为
3、S,求S与x之间的函数表达式第二讲 抛物线图像及性质知识点归纳:考点一、作图“三步取”:一般地,二次函数图像的作法和一次函数及反比例函数图像的作法过程相同,都是三步:列表、描点、连线。 规律技巧:列表时注意以0为中心,对称取值(一般取3-4组值)。观察图像,可得抛物线的开口方向、对称轴。例1(1)作二次函数y=x和y=-x2的图象抛物线y=x2y=-x2对称轴顶点坐标开口方向位置增减性最值(2)作二次函数y=2x+1和y=2 x-1的图象(3)作二次函数y=(x+1)和y=(-x-1)2的图像考点二、求抛物线的顶点、对称轴的方法1)公式法:,顶点是,对称轴是直线.(2)配方法:运用配方的方法,
4、将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.考点三、次函数的图象及性质: (1)二次函数y=ax2 (a0)的图象是一条抛物线,其顶点是原点,对称轴是y轴;当a0时,抛物线开口向上,顶点是最低点;当a0时,抛物线开口向下,顶点是最高点;a越小,抛物线开口越大 (2)二次函数的图象是一条对称轴平行y轴或者与y轴重合的抛物线顶点为(,),对称轴x=;当a0时,抛物线开口向上,图象有最低点,且x,y随x的增大而增大,x,y随x的增大而减小;
5、当a0时,抛物线开口向下,图象有最高点,且x,y随x的增大而减小,x,y随x的增大而增大(3)当a0时,当x=时,函数有最小值;当a0时,当xx=时,函数有最大值考点四、图象的平移:左加右减,上加下减将二次函数y=ax2 (a0)的图象进行平移,可得到y=ax2c,y=a(xh)2,y=a(xh)2k的图象 将y=ax2的图象向上(c0)或向下(c 0)平移|c|个单位,即可得到y=ax2c的图象其顶点是(0,c)形状、对称轴、开口方向与抛物线y=ax2相同 将y=ax2的图象向左(h0)或向右(h0)平移|h|个单位,即可得到y=a(xh)2的图象其顶点是(h,0),对称轴是直线x=h,形状
6、、开口方向与抛物线y=ax2相同 将y=ax2的图象向左(h0)或向下(k0,b0,c0B.a0,b0,c=0C.a0,b0,b0,c 0Bb -2aCa-b+c 0Dc0; a+b+c 0a-b+c 0b2-4ac0abc 0 ;其中正确的为( ) ABCD4.当bbc,且abc0,则它的图象可能是图所示的( ) 6二次函数yax2bxc的图象如图5所示,那么abc,b24ac, 2ab,abc 四个代数式中,值为正数的有( ) A.4个 B.3个 C.2个 D.1个 7.二次函数y=ax2bxc与一次函数y=axc在同一坐标系中的图象大致是图中的( )8、在同一坐标系中,函数y=ax2bx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 讲义 详细 暑期
限制150内