化工原理课程设计--列管式换热器设计说明书(完整版)(共26页).doc
《化工原理课程设计--列管式换热器设计说明书(完整版)(共26页).doc》由会员分享,可在线阅读,更多相关《化工原理课程设计--列管式换热器设计说明书(完整版)(共26页).doc(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上东莞理工学院化工原理课程设计说明书题目: 列管式换热器的设计 学院: 班级: 学号: 姓名: 指导教师: 时间: 专心-专注-专业目录一化工原理课程设计任务书1.1 设计题目:列管式换热器的设计系(院)、专业、年级:学生姓名: 学号:指导老师姓名: 任务起止日期:试自行设计一台固定管板式换热器以完成合成氨车间用冷却水冷却变换气的任务。已知操作条件下变换气方面的数据:(1) 处理能力:(2) 变换气:入口温度140,出口温度55(3) 冷却介质:处理后的软水,入口温度30,出口温度40(4) 允许压强降:3920N/(5) 变换气定性温度下的物性数据:密度,黏度,比热容
2、,导热系数设计任务: 完成列管式换热器的工艺设计,换热管规格及材质的选择及有关附属设备的设计,绘制列管式换热器设备图(附A1图纸绘制)编写设计说明书。1.2 前言换热器是实现化工生产过程中热量交换和传递不可缺少的设备。热量交换中常有一些腐蚀性、氧化性很强的物料,因此,要求制造在换热器的材料具有抗强腐蚀性能。换热器的分类比较广泛:反应釜、压力容器冷凝器、反应锅、螺旋板式换热器、波纹管换热器、列管换热器、板式换热器、螺旋板换热器、管壳式换热器、容积式换热器、浮头式换热器、管式换热器、热管换热器、汽水换热器、换热机组、石墨换热器空气换热器、钛换热器。在合成氨生产过程中,换热器应用十分广泛,主要用于热
3、量的交换和回收。变换工段中主要涉及一氧化碳的转化和能量的回收利用,列管换热器在传热效率,紧凑性和金属耗量不及某些换热器,但它具有结构简单,坚固耐用,适用性强,制造材料广泛等独特优点,因而,在合成氨变换工段选择列管式换热器,而本设计主要对该换热器进行相关选型和计算。1.3 合成氨工业概述氨是最为重要的基础化工产品之一,其产量居各化工产品首位;同时也是能源消耗的大户,世界上大约有10%的能源用于生产合成氨。1.3.1 合成氨工业重要性合成氨工业是基础化学工业的重要组成部分,有十分广泛的用途。氨可生产多种氮肥,如尿素、硫酸铵、硝酸铵、碳酸氢铵等;还可生产多种复合肥,如磷肥等。氨也是重要的工业原料。应
4、用于基本化学工业中的硝酸、纯碱及各种含氮无机盐的生产; 有机工业各种中间体,制药中磺胺药物,高分子中聚纤维、氨基塑料、丁腈橡胶、冷却剂等的生产;国防工业中三硝基甲苯、硝化甘油、硝化纤维等的生产1.3.2 合成氨的原料及原则流程合成氨的原料是氢气和氮气。氮气来源于空气,可以在制氢过程中直接加入空气,或在低温下将空气液化、分离而得;氢气来源于水或含有烃的各种燃料。工业上普遍采用的是以焦炭、煤、天然气、重油等燃料与水蒸气作用的气化方法。合成氨生产的原则流程如图示。合成氨过程由许多环节构成,氨合成反应过程是整个工艺过程的核心。1.4 世界合成氨生产技术及进展1.4.1 国外合成氨技术现状及发展自20世
5、纪20年代第一套合成氨工业投产以来,尽管合成氨生产的基本原理未变,但在合成气制备、合成气净化、氨合成等工艺单元,均取得了重大的技术进步,实现了不少单元技术的革新,以至全流程的更新,使装置规模不断扩大,能量消耗逐步接近理论值。与此同时,在天然气、重油和煤等制氨原料中,由于天然气具有投资省、能耗低的明显经济性优势,使世界上约有85%的装置以天然气为原料。因此合成氨技术的发展主要体现在天然气制氨的技术进步中。20世纪60年代中期,美国凯洛格公司首先开发出以天然气为原料、日产1000吨的大型合成氨技术,其装置在美国投产后每吨氨能耗达到42.0吉焦的先进水平。凯洛格传统合成氨工艺首次在合成氨装置中,采用
6、了离心式压缩机,并将装置中工艺系统与动力系统与动力系统非有机结合起来,实现了装置的单系列大型化(无并行装置)和系统能量自我平衡(即无能量输入),是传统型制氨工艺的最显著特征。称为合成氨工艺的“经典之作”。之后ICI-Uhde、Topsoe、Braun公司等相继开发出与凯洛格工艺技术,其中Topsoe和ICI在以清幽为原料的制氨技术方面,处于世界领先地位。这是合成氨工业史上的第一次技术变革和飞跃。1.4.2 我国合成氨技术的基本状况我国氮肥工业自20世纪5年代以来,不断发展壮大,目前合成氨产量已跃居世界第一位,现已掌握了以焦煤、无烟煤、焦炉气、天然气及油田伴生气和液态烃多种原料生产合成氨、尿素的
7、技术,形成了特有的煤、石油、天然气原料并存和大、中、小生产规模并存的生产格局。目前合成氨总生产能力为4500万t/a左右,氮肥工业已基本满足了国内需求,在与国际接轨后,具备与国际合成氨产品竞争的能力今后的发展重点是调整原料和产品结构,进一步改善经济性。我国目前有大型合成氨装置共计34套,生产能力约1000万t/a;其下游产品除1套装置生产硝酸磷肥之外,均为尿素。按照原料类型分:以天然气(油田气)为原料的17套,以轻油为原料的6套,以重油为原料的9套,以煤为原料的2套。除上海吴泾化工厂为国产化装置外其他均系从国外引进。1.5 概述1.5.1 换热器概述换热器是化工、炼油工业中普遍应用的典型的工艺
8、设备。在化工厂,换热器的费用约占总费用的10%20%,在炼油厂约占总费用35%40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。表2-1 传热器的结构分类类型特点间壁式管壳式列管式固定管式刚性结构用于管壳温差较小的情况(一般50),管间不能清洗带膨胀节有一定的温度补偿能力,
9、壳程只能承受低压力浮头式管内外均能承受高压,可用于高温高压场合U型管式管内外均能承受高压,管内清洗及检修困难填料函式外填料函管间容易泄露,不宜处理易挥发、易爆炸及压力较高的介质内填料函密封性能差,只能用于压差较小的场合釜式壳体上部有个蒸发空间用于再沸、蒸煮双套管式结构比较复杂,主要用于高温高压场合和固定床反应器中套管式能逆流操作,用于传热面积较小的冷却器、冷凝器或预热器螺旋管式沉浸式用于管内流体的冷却、冷凝或管外流体的加热喷淋式只用于管内流体的冷却或冷凝板面式板式拆洗方便,传热面能调整,主要用于粘性较大的液体间换热螺旋板式可进行严格的逆流操作,有自洁的作用,可用做回收低温热能伞板式结构紧凑,拆
10、洗方便,通道较小、易堵,要求流体干净板壳式板束类似于管束,可抽出清洗检修,压力不能太高混合式适用于允许换热流体之间直接接触蓄热式换热过程分阶段交替进行,适用于从高温炉气中回收热能的场合1.5.2 固定管板式因设计需要,下面简单介绍一下固定管板式换热器。固定管板式即两端管板和壳体连结成一体,因此它具有结构简单造价低廉的优点。但是由于壳程不易检修和清洗,因此壳方流体应是较为洁净且不易结垢的物料。当两流体的温度差较大时,应考虑热补偿。有具有补偿圈(或称膨胀节)的固定板式换热器,即在外壳的适当部位焊上一个补偿圈,当外壳和管束的热膨胀程度不同时,补偿圈发生弹性变形(拉伸或压缩),以适应外壳和管束的不同的
11、热膨胀程度。这种热补偿方法简单,但不宜用于两流体温度差太大(不大于70)和壳方流体压强过高(一般不高于600kPa)的场合。1-挡板 2-补偿圈 3-放气嘴图2.2.1.固定管板式换热器的示意图1.5.3 列管换热器主要部件(1)换热管换热管的尺寸和形状对传热有很大影响,管径越小,单位体积设备的传热面积就越大,这意味着设备越紧凑,体积则越小,对流传热系数较高。但制造麻烦,且小管易结垢,不易机械清洗。所以对清洁的流体小管子为宜,对粘度大或易结垢的液体管径则可取大些。目前我国列管式换热器系列标准中,所采用的无缝钢管规格多为19mm2mm和25mm2.5mm两种。换热器一般用光管,这样结构简单,制造
12、容易,但对流传热系数较低。管子在管板上的固定,原则是必须保证管子和管板连接牢固,不能在连接处产生泄漏,否则会给操作带来严重故障。目前广泛采用胀接法和焊接法,在高温高压时有时也采用胀接加焊接的方法,近来出现了一种爆炸胀管法。胀接法是用胀管器挤压伸人管板孔中的管子端部,使管端发生塑性变形,管板孔同时产生弹性变形。当取出胀管器后,管板孔弹性收缩,管板和管子就会紧紧挤压在一起,实现密封紧固。采用胀接时,管板硬度应比管端高,这样可免除在胀接时管板孔产生塑性变形,影响胀接的紧密性。胀接法一般多用于压力低于3.923 Pa,温度低于300的场合。如果温度高,管子和管板会产生蠕变,胀接应力松弛而引起连接处泄漏
13、。所以对高压、高温、易燃易爆的流体,换热管的紧固多采用焊接法。当温度高于300或压力高于3.923 Pa时,一般多采用焊接法。这样可保证高温高压时连接的紧密性,同时焊接工艺较胀管工艺简便,管板孔加工要求低,且压力不太高时可使用较薄的管板,因此焊接法被广泛采用。但焊接法由于焊接接头处的热应力,可能会造成应力腐蚀和破裂,同时管板孔与管子间存在间隙。换热管在管板上可按等边三角形、正方形直列和正方形错列排列。等边三角形排列较紧凑,管外流体湍动程度高,传热分系数大;正方形排列管外清洁方便。 (a) (b) (c) 图5 换热管在管板上的排列(a)正三角形排列;(b)正方形直列;(c)正方形错列(2)管板
14、列管式换热器的管板一般用圆平板,在上面开孔以装设换热管束,管板又与壳体连接。管板与壳体的连接方法与换热器的形式有关。对固定管板式换热器,常采用不可拆连接方式,即直接将两端管板焊接在壳体。对浮头式、U形管式换热器,由于管束要从壳体中抽出,故常用可拆连接方式,即把管板夹于壳体法兰与顶盖法兰之间,用螺栓紧固,必要时卸下顶盖就可把管板连同管束从壳体中抽出。(3)折流挡板为了加大壳程流体的速度,增强湍动程度,以提高壳程流体的对流传热系数,往往在壳程内装置折流挡板。另外折流挡板对换热管束还起着支撑作用,可防止管子的变形。不利的是挡板的存在使流体阻力增加,另外挡板和壳体间、挡板和管束间的间隙如过大,部分流体
15、会从问隙中流过,产生旁流,严重时反而会使对流传热系数减小。折流挡板形式较多,主要有两种,一种是横向折流挡板,壳程流体横向流动;另一种是纵向折流挡板,壳程流体平行流过管束。(4)主要附件封头封头有方形和圆形两种。方形用于直径小(一般小于300mm)的壳体,圆形用于大直径的壳体。由于在清洗和检修管束时需将封头拆下,所以封头结构应便于拆装,一般通过法兰与壳体连接。导流筒在壳程流体进、出口和管板间必存在一段流体不能流动的空间(死角),这显然对传热不利。所以常在管束外增设导流筒,使流体进、出壳程时必然经过这个空间,尽量消除死角,提高传热效果。放气孔、排液孔在换热器的壳体上常安装放气孔和排液孔,以排出不凝
16、气体和冷凝液体。支撑板、缓冲挡板一般卧式换热器都有折流挡板,它既起折流作用,又对换热管起支撑作用。但当工艺上无折流挡板的要求,例如冷凝器,而管子又比较细长时,应设置一定数量的支撑板,以便于安装管子和防止管子变形。缓冲挡板是为了防止壳程流体进人换热器时对管束的冲击,在进料管口设置,但距壳壁不应太近(不小于30rnm)缓冲挡板有圆形和方形两种。导流筒由于是将流体导至管板处才进入管束间,所以对流体流入壳程时也起着缓冲作用。有时将壳程接管在入口处加以扩大,做成喇叭形,也是为了缓冲目的。换热器的其它零部件还有壳体、接管、膨胀节、支座、法兰和法兰盖等。1.5.4 设计背景及设计要求1)设计背景在化工、石油
17、、动力、制冷、食品等行业中广泛地使用各种换热器,且他们是上述这些行业的通用设备,并占有十分重要的地位。在化工厂,换热器的费用约占总费用的10%-20%,在炼油厂约占总费用的35%-40%。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。换热器的设计、制造、结构改进及传热机理的研究十分的活跃。一些新型的换热器相继问世。随着换热器在工业生产中地位和作用不同,换热器的类型也多种多样,不同类型的换热器自然有各自不同的优缺点与性能;所以在换热器的设计中,首先应根据工艺要求选择使用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。2)设计要求完善的换热器
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 化工 原理 课程设计 列管 换热器 设计 说明书 完整版 26
限制150内