2013-2014数列专题总复习知识点整理与经典例题讲解(共13页).doc
《2013-2014数列专题总复习知识点整理与经典例题讲解(共13页).doc》由会员分享,可在线阅读,更多相关《2013-2014数列专题总复习知识点整理与经典例题讲解(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上数列专题复习一、等差数列的有关概念:1、等差数列的判断方法:定义法或。如设是等差数列,求证:以bn= 为通项公式的数列为等差数列。2、等差数列的通项:或。如(1)等差数列中,则通项(答:);(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是_(答:)3、等差数列的前和:,。如(1)数列 中,前n项和,则 ,(答:,);(2)已知数列 的前n项和,求数列的前项和(答:).4、等差中项:若成等差数列,则A叫做与的等差中项,且。提醒:(1)等差数列的通项公式及前和公式中,涉及到5个元素:、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求
2、出其余2个,即知3求2。(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为,(公差为);偶数个数成等差,可设为,,(公差为2)5、等差数列的性质:(1)当公差时,等差数列的通项公式是关于的一次函数,且斜率为公差;前和是关于的二次函数且常数项为0.(2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。(3)当时,则有,特别地,当时,则有.如(1)等差数列中,则_(答:27); (4) 若、是等差数列,则、 (、是非零常数)、 ,也成等差数列,而成等比数列;若是等比数列,且,则是等差数列. 如等差数列的前n项和为25,前2n项和为100,则它的前3n和为 。(答
3、:225)(5)在等差数列中,当项数为偶数时,;项数为奇数时,(这里即);。如(1)在等差数列中,S1122,则_(答:2);(2)项数为奇数的等差数列中,奇数项和为80,偶数项和为75,求此数列的中间项与项数(答:5;31).(6)若等差数列、的前和分别为、,且,则.如设与是两个等差数列,它们的前项和分别为和,若,那么_(答:)(7)“首正”的递减等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和。法一:由不等式组确定出前多少项为非负(或非正);法二:因等差数列前项是关于的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性。上述两种方
4、法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗?如(1)等差数列中,问此数列前多少项和最大?并求此最大值。(答:前13项和最大,最大值为169);(2)若是等差数列,首项,则使前n项和成立的最大正整数n是 (答:4006)(3)在等差数列中,且,是其前项和,则( )A、都小于0,都大于0B、都小于0,都大于0C、都小于0,都大于0D、都小于0,都大于0(答:B)(8)如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即研究.二、等比数列的有关概念:1
5、、等比数列的判断方法:定义法,其中或。如(1)一个等比数列共有项,奇数项之积为100,偶数项之积为120,则为_(答:);(2)数列中,=4+1 ()且=1,若 ,求证:数列是等比数列。2、等比数列的通项:或。如等比数列中,前项和126,求和.(答:,或2)3、等比数列的前和:当时,;当时,。如(1)等比数列中,2,S99=77,求(答:44);(2)的值为_(答:2046);特别提醒:等比数列前项和公式有两种形式,为此在求等比数列前项和时,首先要判断公比是否为1,再由的情况选择求和公式的形式,当不能判断公比是否为1时,要对分和两种情形讨论求解。4、等比中项:若成等比数列,那么A叫做与的等比中
6、项。提醒:不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个。如已知两个正数的等差中项为A,等比中项为B,则A与B的大小关系为_(答:AB)提醒:(1)等比数列的通项公式及前和公式中,涉及到5个元素:、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2;(2)为减少运算量,要注意设元的技巧,如奇数个数成等比,可设为,(公比为);但偶数个数成等比时,不能设为,因公比不一定为正数,只有公比为正时才可如此设,且公比为。如有四个数,其中前三个数成等差数列,后三个成等比数列,且第一个数与第四个数的和是16,第二个数与第三个数的和为12,求此四个数。(答:1
7、5,,9,3,1或0,4,8,16)5.等比数列的性质:(1)当时,则有,特别地,当时,则有.如(1)在等比数列中,公比q是整数,则=_(答:512);(2)各项均为正数的等比数列中,若,则 (答:10)。(2) 若是等比数列,则、成等比数列;若成等比数列,则、成等比数列; 若是等比数列,且公比,则数列 ,也是等比数列。当,且为偶数时,数列 ,是常数数列0,它不是等比数列. 如(1)已知且,设数列满足,且,则. (答:);(2)在等比数列中,为其前n项和,若,则的值为_(答:40)(3)若,则为递增数列;若, 则为递减数列;若 ,则为递减数列;若, 则为递增数列;若,则为摆动数列;若,则为常数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013 2014 数列 专题 复习 知识点 整理 经典 例题 讲解 13
限制150内