2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)圆的方程(共10页).doc
《2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)圆的方程(共10页).doc》由会员分享,可在线阅读,更多相关《2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)圆的方程(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上圆_的_方_程知识能否忆起1圆的定义及方程定义平面内与定点的距离等于定长的点的集合(轨迹)标准方程(xa)2(yb)2r2(r0)圆心:(a,b),半径:r一般方程x2y2DxEyF0(D2E24F0)圆心:,半径:2点与圆的位置关系点M(x0,y0)与圆(xa)2(yb)2r2的位置关系:(1)若M(x0,y0)在圆外,则(x0a)2(y0b)2r2.(2)若M(x0,y0)在圆上,则(x0a)2(y0b)2r2.(3)若M(x0,y0)在圆内,则(x0a)2(y0b)2r2.小题能否全取1(教材习题改编)方程x2y24mx2y5m0表示圆的充要条件是()A.m1B
2、m或m1Cm Dm1解析:选B由(4m)2445m0得m或m1.2(教材习题改编)点(1,1)在圆(xa)2(ya)24内,则实数a的取值范围是()A(1,1) B(0,1)C(,1)(1,) D(1,)解析:选A点(1,1)在圆的内部,(1a)2(1a)24,1a1.3圆心在y轴上,半径为1,且过点(1,2)的圆的方程为()Ax2(y2)21 Bx2(y2)21C(x1)2(y3)21 Dx2(y3)21解析:选A设圆心坐标为(0,b),则由题意知1,解得b2,故圆的方程为x2(y2)21.4(2012潍坊调研)圆x22xy230的圆心到直线xy30的距离为_解析:圆心(1,0),d1.答案
3、:15(教材习题改编)圆心在原点且与直线xy20相切的圆的方程为_解析:设圆的方程为x2y2a2(a0)a,a,x2y22.答案:x2y221.方程Ax2BxyCy2DxEyF0表示圆的充要条件是:(1)B0;(2)AC0;(3)D2E24AF0.2求圆的方程时,要注意应用圆的几何性质简化运算(1)圆心在过切点且与切线垂直的直线上(2)圆心在任一弦的中垂线上(3)两圆内切或外切时,切点与两圆圆心三点共线圆的方程的求法典题导入例1(1)(2012顺义模拟)已知圆C关于y轴对称,经过点(1,0)且被x轴分成两段弧长之比为12,则圆C的方程为()A.2y2B.2y2Cx22 Dx22(2)已知圆C经
4、过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为_自主解答(1)由已知知圆心在y轴上,且被x轴所分劣弧所对圆心角为,设圆心(0,b),半径为r,则rsin1,rcos|b|,解得r,|b|,即b.故圆的方程为x22.(2)圆C的方程为x2y2DxF0,则解得圆C的方程为x2y24x60.答案(1)C(2)x2y24x60由题悟法1利用待定系数法求圆的方程关键是建立关于a,b,r或D,E,F的方程组2利用圆的几何性质求方程可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想的运用以题试法1(2012浙江五校联考)过圆x2y24外一点P(4,2)作圆的两条切线,切点分别为A,B
5、,则ABP的外接圆的方程是()A(x4)2(y2)21Bx2(y2)24C(x2)2(y1)25 D(x2)2(y1)25解析:选D易知圆心为坐标原点O,根据圆的切线的性质可知OAPA,OBPB,因此P,A,O,B四点共圆,PAB的外接圆就是以线段OP为直径的圆,这个圆的方程是(x2)2(y1)25.与圆有关的最值问题典题导入例2(1)(2012湖北高考)过点P(1,1)的直线,将圆形区域(x,y)|x2y24分为两部分,使得这两部分的面积之差最大,则该直线的方程为()Axy20 By10Cxy0 Dx3y40(2)P(x,y)在圆C:(x1)2(y1)21上移动,则x2y2的最小值为_自主解
6、答(1)当圆心与P的连线和过点P的直线垂直时,符合条件圆心O与P点连线的斜率k1,直线OP垂直于xy20.(2)由C(1,1)得|OC|,则|OP|min1,即()min1.所以x2y2的最小值为(1)232.答案(1)A(2)32由题悟法解决与圆有关的最值问题的常用方法(1)形如u的最值问题,可转化为定点(a,b)与圆上的动点(x,y)的斜率的最值问题(如A级T9);(2)形如taxby的最值问题,可转化为动直线的截距的最值问题(如以题试法2(2);(3)形如(xa)2(yb)2的最值问题,可转化为动点到定点的距离的最值问题(如例(2)以题试法2(1)(2012东北三校联考)与曲线C:x2y
7、22x2y0相内切,同时又与直线l:y2x相切的半径最小的圆的半径是_(2)已知实数x,y满足(x2)2(y1)21则2xy的最大值为_,最小值为_解析:(1)依题意,曲线C表示的是以点C(1,1)为圆心,为半径的圆,圆心C(1,1)到直线y2x即xy20的距离等于2,易知所求圆的半径等于.(2)令b2xy,则b为直线2xyb在y轴上的截距的相反数,当直线2xyb与圆相切时,b取得最值由1.解得b5,所以2xy的最大值为5,最小值为5.答案:(1)(2)55与圆有关的轨迹问题典题导入例3(2012正定模拟)如图,已知点A(1,0)与点B(1,0),C是圆x2y21上的动点,连接BC并延长至D,
8、使得|CD|BC|,求AC与OD的交点P的轨迹方程自主解答设动点P(x,y),由题意可知P是ABD的重心由A(1,0),B(1,0),令动点C(x0,y0),则D(2x01,2y0),由重心坐标公式得则代入x2y21,整理得2y2(y0),故所求轨迹方程为2y2(y0)由题悟法求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:(1)直接法:直接根据题目提供的条件列出方程(2)定义法:根据直线、圆、圆锥曲线等定义列方程(3)几何法:利用圆与圆的几何性质列方程(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等以题试法3(2012郑州模拟)动点P到点A(8,0)的距离是到点B(
9、2,0)的距离的2倍,则动点P的轨迹方程为()Ax2y232Bx2y216C(x1)2y216 Dx2(y1)216解析:选B设P(x,y),则由题意可得2,化简整理得x2y216.1圆(x2)2y25关于原点P(0,0)对称的圆的方程为()A(x2)2y25Bx2(y2)25C(x2)2(y2)25 Dx2(y2)25解析:选A圆上任一点(x,y)关于原点对称点为(x,y)在圆(x2)2y25上,即(x2)2(y)25.即(x2)2y25.2(2012辽宁高考)将圆x2y22x4y10平分的直线是()Axy10 Bxy30Cxy10 Dxy30解析:选C要使直线平分圆,只要直线经过圆的圆心即
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 高考 数学 一轮 复习 教学 基础知识 高频 考点 解题 训练 方程 10
限制150内