三角函数的图像与性质专题(共14页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《三角函数的图像与性质专题(共14页).doc》由会员分享,可在线阅读,更多相关《三角函数的图像与性质专题(共14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第 讲 三角函数的图像与性质 时间: 年 月 日 刘老师 学生签名: 一、 兴趣导入二、 学前测试 1已知角的终边上一点的坐标为,则角的最小正角是( )A、 B、 C、 D、解析D 角在第四象限且2若是第二象限的角,且,则是( )A、第一象限角 B、第二象限角 C、第三象限角 D、第四象限角解析C 当时,在第一象限;当时,在第三象限;而,在第三象限;3已知角的终边与函数决定的函数图象重合,求= 解析:在角的终边上取点故=4.(湛江市实验中学2010届高三第四次月考)已知,且角在第一象限,那么2在( )A第一象限B第二象限C第三象限D第四象限解析:B,故2在第二象限.三
2、、方法培养1“五点法”描图(1)ysin x的图象在0,2上的五个关键点的坐标为 (0,0)(,0)(2,0) (2)ycos x的图象在0,2上的五个关键点的坐标为 (0,1),(,1),(2,1) 2.三角函数的图象和性质函数性质ysin xycos xytan x定义域RRx|xk,kZ图象 值域1,11,1R对称性对称轴:_ xk(kZ)_ _;对称中心:_ (k,0)(kZ)_ _对称轴: xk(kZ)_;对称中心:_(k,0) (kZ)_ 对称中心:_ (kZ) _周期2_2单调性单调增区间_2k,2k(kZ)_;单调减区间2k,2k (kZ) _单调增区间2k,2k (kZ) _
3、;单调减区间2k,2k(kZ)_单调增区间_(k,k)(kZ)_ 奇偶性奇函数偶函数奇函数3.一般地对于函数f(x),如果存在一个非零的常数T,使得当x取定义域内的每一个值时,都有f(xT)f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期)对函数周期性概念的理解周期性是函数的整体性质,要求对于函数整个定义域范围的每一个x值都满足f(xT)f(x),其中T是不为零的常数.如果只有个别的x值满足f(xT)f(x),或找到哪怕只有一个x值不满足f(xT)f(x),都不能说T是函数f(x)的周期.函数yAsi
4、n(x)和yAcos(x)的最小正周期为 ,ytan(x)的最小正周期为 .4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性;关于正、余弦函数的有界性由于正余弦函数的值域都是1,1,因此对于xR,恒有1sin x1,1cos x1,所以1叫做ysin x,ycos x的上确界,1叫做ysin x,ycos x的下确界.(2)形式复杂的函数应化为yAsin(x)k的形式逐步分析x的范围,根据正弦函数单调性写出函数的值域;含参数的最值问题,要讨论参数对最值的影响.(3)换元法:把sin x或cos x看作一个整体,可化为求函数在区间上的值域(最值)问题利用换元法求三角函
5、数最值时注意三角函数有界性,如:ysin2x4sin x5,令tsin x(|t|1),则y(t2)211,解法错误.5.求三角函数的单调区间时,应先把函数式化成形如yAsin(x) (0)的形式,再根据基本三角函数的单调区间,求出x所在的区间.应特别注意,应在函数的定义域内考虑.注意区分下列两题的单调增区间不同;利用换元法求复合函数的单调区间(要注意x系数的正负号) (1)ysin;(2)ysin.专题1:三角函数的单调性与周期性函数yAsin(x)和yAcos(x)的最小正周期为 ,ytan(x)的最小正周期为 .例1变式练习1(2011南平月考)(1)求函数ysin,x,的单调递减区间;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 图像 性质 专题 14
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内