2020届全国大联考高三第五次联考数学(理)试题(解析版)(共20页).doc
《2020届全国大联考高三第五次联考数学(理)试题(解析版)(共20页).doc》由会员分享,可在线阅读,更多相关《2020届全国大联考高三第五次联考数学(理)试题(解析版)(共20页).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2020届全国大联考高三第五次联考数学(理)试题一、单选题1已知复数满足,则( )ABCD【答案】A【解析】由复数的运算法则计算【详解】因为,所以故选:A【点睛】本题考查复数的运算属于简单题2已知全集,集合,则( )ABCD【答案】B【解析】解分式不等式和一元二次不等式得集合,然后由集合的运算法则计算【详解】依题意,故故选:B【点睛】本题考查集合的运算考查解分式不等式和一元二次不等式,掌握集合的运算法则是解题基础3已知随机变量服从正态分布,且,则( )ABCD【答案】C【解析】根据在关于对称的区间上概率相等的性质求解【详解】,故选:C【点睛】本题考查正态分布的应用掌握
2、正态曲线的性质是解题基础随机变量服从正态分布,则4国务院发布关于进一步调整优化结构、提高教育经费使用效益的意见中提出,要优先落实教育投入某研究机构统计了年至年国家财政性教育经费投入情况及其在中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是( ) A随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长B年以来,国家财政性教育经费的支出占比例持续年保持在以上C从年至年,中国的总值最少增加万亿D从年到年,国家财政性教育经费的支出增长最多的年份是年【答案】C【解析】观察图表,判断四个选项是否正确【详解】由表易知、项均正确,年中国为万亿元,年中国为万亿元,则从年至年,中国的总值大约
3、增加万亿,故C项错误【点睛】本题考查统计图表,正确认识图表是解题基础5如图,在三棱锥中,平面,现从该三棱锥的个表面中任选个,则选取的个表面互相垂直的概率为( )ABCD【答案】A【解析】根据线面垂直得面面垂直,已知平面,由,可得平面,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率【详解】由已知平面,可得,从该三棱锥的个面中任选个面共有种不同的选法,而选取的个表面互相垂直的有种情况,故所求事件的概率为故选:A【点睛】本题考查古典概型概率,解题关键是求出基本事件的个数6执行如图所示的程序框图,输出的结果为( )ABCD【答案】D【解析】由程序框图确定程序功能后可得出结论【
4、详解】执行该程序可得故选:D【点睛】本题考查程序框图解题可模拟程序运行,观察变量值的变化,然后可得结论,也可以由程序框图确定程序功能,然后求解7已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为、元)甲、乙租车费用为元的概率分别是、,甲、乙租车费用为元的概率分别是、,则甲、乙两人所扣租车费用相同的概率为( )ABCD【答案】B【解析】甲、乙两人所扣租车费用相同即同为1元,或同为2元,或同为3元,由独立事件的概率公式计算即得【详解】由题意甲、乙租车费用为3元的概率分别是,甲、乙两人所扣租车费用相同的概率为故选:B【点睛】本题考查独立性事件的概率掌握独立事件的概率乘法公式是解题基础8已知
5、,且,则在方向上的投影为( )ABCD【答案】C【解析】由向量垂直的向量表示求出,再由投影的定义计算【详解】由可得,因为,所以故在方向上的投影为故选:C【点睛】本题考查向量的数量积与投影掌握向量垂直与数量积的关系是解题关键9甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人已知:甲不在远古村寨,也不在百里绝壁;乙不在原始森林,也不在远古村寨;“丙在远古村寨”是“甲在原始森林”的充分条件;丁不在百里绝壁,也不在远古村寨若以上语句都正确,则游玩千丈瀑布景点的同学是( )A甲B乙C丙D丁【答案】D【解析】根据演绎
6、推理进行判断【详解】由可知甲乙丁都不在远古村寨,必有丙同学去了远古村寨,由可知必有甲去了原始森林,由可知丁去了千丈瀑布,因此游玩千丈瀑布景点的同学是丁故选:D【点睛】本题考查演绎推理,掌握演绎推理的定义是解题基础10的展开式中,满足的的系数之和为( )ABCD【答案】B【解析】,有,三种情形,用中的系数乘以中的系数,然后相加可得【详解】当时,的展开式中的系数为当,时,系数为;当,时,系数为;当,时,系数为;故满足的的系数之和为故选:B【点睛】本题考查二项式定理,掌握二项式定理和多项式乘法是解题关键11观察下列各式:,根据以上规律,则( )ABCD【答案】B【解析】每个式子的值依次构成一个数列,
7、然后归纳出数列的递推关系后再计算【详解】以及数列的应用根据题设条件,设数字,构成一个数列,可得数列满足,则,故选:B【点睛】本题主要考查归纳推理,解题关键是通过数列的项归纳出递推关系,从而可确定数列的一些项12已知函数在区间上恰有四个不同的零点,则实数的取值范围是( )ABCD【答案】A【解析】函数的零点就是方程的解,设,方程可化为,即或,求出的导数,利用导数得出函数的单调性和最值,由此可根据方程解的个数得出的范围【详解】由题意得有四个大于的不等实根,记,则上述方程转化为,即,所以或因为,当时,单调递减;当时,单调递增;所以在处取得最小值,最小值为因为,所以有两个符合条件的实数解,故在区间上恰
8、有四个不相等的零点,需且故选:A【点睛】本题考查复合函数的零点考查转化与化归思想,函数零点转化为方程的解,方程的解再转化为研究函数的性质,本题考查了学生分析问题解决问题的能力二、填空题13某大学、四个不同的专业人数占本校总人数的比例依次为、,现欲采用分层抽样的方法从这四个专业的总人数中抽取人调查毕业后的就业情况,则专业应抽取_人【答案】【解析】求出专业人数在、四个专业总人数的比例后可得【详解】由题意、四个不同的专业人数的比例为,故专业应抽取的人数为故答案为:39【点睛】本题考查分层抽样,根据分层抽样的定义,在各层抽取样本数量是按比例抽取的14“六艺”源于中国周朝的贵族教育体系,具体包括“礼、乐
9、、射、御、书、数”某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“礼”与“乐”必须排在前两节,“射”和“御”两讲座必须相邻的不同安排种数为_【答案】【解析】分步排课,首先将“礼”与“乐”排在前两节,然后,“射”和“御”捆绑一一起作为一个元素与其它两个元素合起来全排列,同时它们内部也全排列【详解】第一步:先将“礼”与“乐”排在前两节,有种不同的排法;第二步:将“射”和“御”两节讲座捆绑再和其他两艺全排有种不同的排法,所以满足“礼”与“乐”必须排在前两节,“射”和“御”两节讲座必须相邻的不同安排种数为故答案为:24【点睛】本题考查排列的应用,排列组合问题中,遵循
10、特殊元素特殊位置优先考虑的原则,相邻问题用捆绑法,不相邻问题用插入法15已知“在中,”,类比以上正弦定理,“在三棱锥中,侧棱与平面所成的角为、与平面所成的角为,则_【答案】【解析】类比,三角形边长类比三棱锥各面的面积,三角形内角类比三棱锥中侧棱与面所成角【详解】,故,【点睛】本题考查类比推理类比正弦定理可得,类比时有结构类比,方法类比等16已知抛物线的对称轴与准线的交点为,直线与交于,两点,若,则实数_【答案】【解析】由于直线过抛物线的焦点,因此过,分别作的准线的垂线,垂足分别为,由抛物线的定义及平行线性质可得,从而再由抛物线定义可求得直线倾斜角的余弦,再求得正切即为直线斜率注意对称性,问题应
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 全国 联考 第五 数学 试题 解析 20
限制150内