初二数学因式分解讲解(共3页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《初二数学因式分解讲解(共3页).doc》由会员分享,可在线阅读,更多相关《初二数学因式分解讲解(共3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上十字相乘法一、 导入二、 前一节课我们学习了关于x2+(p+q)x+pq这类二次三项式的因式分解,这类式子的特点是:二次项系数为1,常数项是两个数之积,一次项系数是常数项的两个因数之和。因此,我们得到x2+(p+q)x+pq=(x+p)(x+q).课前练习:下列各式因式分解1- x2+2 x+15 2(x+y)2-8(x+y)+48;3x4-7x2+18; 4x2-5xy+6y2。答:1-(x+3)(x-5); 2(x+y-12)(x+y+4); 3(x+3)(x-3)(x2+2); 4(x-2y)(x-3y)。 我们已经学习了把形如x2+px+q的某些二次三项式因式
2、分解,也学习了通过设辅助元的方法把能转化为形如x2+px+q型的某些多项式因式分解。 对于二次项系数不是1的二次三项式如何因式分解呢?这节课就来讨论这个问题,即把某些形如ax2+bx+c的二次三项式因式分解。 二、新课 例1 把2x2-7x+3因式分解。分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。分解二次项系数(只取正因数): 2=12=21;分解常数项: 3=13=31=(-3)(-1)=(-1)(-3)。用画十字交叉线方法表示下列四种情况:1 1 1 3 1 -1 1 -32 3
3、2 1 2 -3 2 -113+21 11+23 1(-3)+2(-1) 1(-1)+2(-3) =5 =7 = -5 =-7经过观察,第四种情况是正确有。这是因为交叉相乘后,两项代数和恰等于一次项系数-7。解 2x2-7x+3=(x-3)(2x-1)。一般地,对于二次三项式ax2+bx+c(a0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2排列如下: a1 c1 a2 c2 a1c2 + a2c1按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2
4、+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即 ax2+bx+c=(a1x+c1)(a2x+c2)。 像这种借助开十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法。 例2 把6x2-7x-5分解因式。 分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种 2 1 3 -5 2(-5)+31=-7是正确的,因此原多项式可以用直字相乘法分解因式。 解 6x2-7x-5=(2x+1)(3x-5)。指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,
5、往往要经过多次观察,才能确定是否可以用十字相乘法分解因式。对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数。例如把x2+2x-15分解因式,十字相乘法是 1 -3 1 5 15+1(-3)=2所以x2+2x-15=(x-3)(x+5)。 例3 把5x2+6xy-8y2分解因式。 分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即 1 2 5 -4 1(-4)+52=6解 5x2+6xy-8y2=(x+2y)(5x-4y)。指出:原式分解为两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 数学 因式分解 讲解
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内