2010年全国各地高考数学真题分章节分类汇编(共36页).doc
《2010年全国各地高考数学真题分章节分类汇编(共36页).doc》由会员分享,可在线阅读,更多相关《2010年全国各地高考数学真题分章节分类汇编(共36页).doc(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2010年全国各地高考数学真题分章节分类汇编第10部分:圆锥曲线一、选择题:1( 2010年高考全国卷I理科9)已知、为双曲线C:的左、右焦点,点p在C上,p=,则P到x轴的距离为(A) (B) (C) (D) 1.B 【命题意图】本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.【解析】不妨设点P在双曲线的右支,由双曲线的第二定义得,.由余弦定理得cosP=,即cos,解得,所以,故P到x轴的距离为2(2010年高考福建卷理科2)以抛物线的焦点为圆心,且过坐标原点的圆的方程为( )A. B.
2、C. D. 【答案】D【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为,故所求圆的方程为,即,选D。【命题意图】本题考查抛物线的几何性质以及圆的方程的求法,属基础题。3(2010年高考福建卷理科7)若点O和点分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为 ( )A. B. C. D. 【答案】B【解析】因为是已知双曲线的左焦点,所以,即,所以双曲线方程为,设点P,则有,解得,因为,所以=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值,故的取值范围是,选B。【命题意图】本题考查待定系数法求双曲线方程,考查平面向量的
3、数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程序以及知识的综合应用能力、运算能力。4(2010年高考安徽卷理科5)双曲线方程为,则它的右焦点坐标为A、B、C、D、5.C【解析】双曲线的,所以右焦点为.【误区警示】本题考查双曲线的交点,把双曲线方程先转化为标准方程,然后利用求出c即可得出交点坐标.但因方程不是标准形式,很多学生会误认为或,从而得出错误结论.5.(2010年高考天津卷理科5) 已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,则双曲线的方程为(A) (B)(C) (D) 【答案】B【解析】因为双曲线的一个焦点在抛物线的准线上,所以F(-6,0)
4、是双曲线的左焦点,即,又双曲线的一条渐近线方程是, 所以,解得,所以双曲线的方程为,故选B。6(2010年高考四川卷理科9)椭圆的右焦点,其右准线与轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点,则椭圆离心围是w_w_w.k*s 5*u.c o*m(A) (B) (C) (D)解析:由题意,椭圆上存在点P,使得线段AP的垂直平分线过点,即F点到P点与A点的距离相等w_w w. k#s5_u.c o*m而|FA| w_w_w.k*s 5*u.c o*m |PF|ac,ac于是ac,ac即acc2b2acc2 w_w_w.k*s 5*u.c o*m又e(0,1)故e答案:D7. (20
5、10年全国高考宁夏卷12)已知双曲线的中心为原点,是的焦点,过F的直线与相交于A,B两点,且AB的中点为,则的方程式为(A) (B) (C) (D) 【答案】B 解析:由已知条件易得直线的斜率为,设双曲线方程为,则有,两式相减并结合得,从而,即,又,解得,故选B8(2010年高考陕西卷理科8)已知抛物线的准线与圆相切,则的值为 【 】 【答案】C【解析】由题设知,直线与圆相切,从而.故选.9(2010年高考浙江卷8)设,分别为双曲线的左,右焦点。若在双曲线右支上存在点,满足=,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近方程为 (A) (B) (C) (D) 【答案】C10(2010年高
6、考辽宁卷理科7)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PAl,A为垂足如果直线AF的斜率为,那么|PF|= (A) (B)8 (C) (D) 16【答案】B11(2010年高考辽宁卷理科9)设双曲线的个焦点为F;虚轴的个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为 (A) (B) (C) (D) 【答案】D12(2010年高考全国2卷理数12)已知椭圆的离心率为,过右焦点且斜率为的直线与相交于两点若,则(A)1 (B) (C) (D)213(2010年上海市春季高考17)答案:B解析:由即,则。故“”推不出“直线与抛物线有两个不同的交点”,但“直
7、线与抛物线有两个不同的交点”则必有“”。故选B.二、填空题:1( 2010年高考全国卷I理科16)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为 .1.【命题意图】本小题主要考查椭圆的方程与几何性质、第二定义、平面向量知识,考查了数形结合思想、方程思想,本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.【解析】如图,,作轴于点D1,则由,得,所以,即,由椭圆的第二定义得又由,得,整理得.两边都除以,得,解得.2. (2010年高考湖南卷理科14)【解析】抛物线的焦点坐标为F(0,),则过焦点斜率为1的直线方程为,设A(),由题意可知
8、由,消去y得,由韦达定理得,所以梯形ABCD的面积为:所以【命题意图】本题考查抛物线的焦点坐标,直线的方程,直线与抛物线的位置关系,考察考生的运算能力,属中档题3(2010年高考江苏卷试题6)在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是_【答案】4 解析考查双曲线的定义。,为点M到右准线的距离,=2,MF=4。4(2010年高考北京卷理科13)已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的焦点坐标为 ;渐近线方程为 。【答案】;解析:双曲线焦点即为椭圆焦点,不难算出为,又双曲线离心率为2,即,故,渐近线为5(2010年高考江西卷理科15)点
9、在双曲线的右支上,若点到右焦点的距离等于,则 .【答案】26(2010年高考浙江卷13)设抛物线y2=2px(p0)的焦点为F,点A(0,2). 若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为_.【答案】7(2010年高考全国2卷理数15)已知抛物线的准线为,过且斜率为的直线与相交于点,与的一个交点为若,则 【答案】2 【命题意图】本题主要考查抛物线的定义与性质.【解析】过B作BE垂直于准线于E,M为中点,又斜率为,M为抛物线的焦点,2.8(2010年高考上海市理科3)动点到点的距离与它到直线的距离相等,则的轨迹方程为 。【答案】【解析】由题意知, 的轨迹是以点为焦点,以直线为准线的
10、抛物线,所以,得出抛物线方程为,即为所求.9(2010年高考上海市理科13)如图所示,直线x=2与双曲线的渐近线交于,两点,记,任取双曲线上的点P,若,则a、b满足的一个等式是 【答案】4ab=110. (2010年高考重庆市理科14)已知以F为焦点的抛物线上的两点A、B满足,则弦AB的中点到准线的距离为_【答案】解析:设BF=m,由抛物线的定义知中,AC=2m,AB=4m, 直线AB方程为 与抛物线方程联立消y得所以AB中点到准线距离为。11(2010年上海市春季高考5)若椭圆上一点到焦点的距离为6,则点到另一个焦点的距离是 答案:4解析:由椭圆的定义知,故。12(2010年上海市春季高考7
11、)已知双曲线经过点,它的一条渐近线方程为,则双曲线的标准方程是 。答案:。解析:设双曲线的方程为,将点代入可得。故答案为。三、解答题:1(2010年高考山东卷理科)(本小题满分12分)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.()求椭圆和双曲线的标准方程;来源:学.科.网Z.X.X.K()设直线、的斜率分别为、,证明;()是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.【解析】()由题意知,椭圆离心率为,得,又,所以可解得,所以,所以椭圆的标准方
12、程为;所以椭圆的焦点坐标为(,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为。()设点P(,),则=,=,所以=,又点P(,)在双曲线上,所以有,即,所以=1。()假设存在常数,使得恒成立,则由()知,所以设直线AB的方程为,则直线CD的方程为,由方程组消y得:,设,则由韦达定理得:所以|AB|=,同理可得|CD|=,又因为,所以有=+=,所以存在常数,使得恒成立。【命题意图】本题考查了椭圆的定义、离心率、椭圆与双曲线的标准方程、直线与圆锥曲线的位置关系,是一道综合性的试题,考查了学生综合运用知识解决问题的能力。其中问题(3)是一个开放性问题,考查了同学们观察、推
13、理以及创造性地分析问题、解决问题的能力。2(2010年高考福建卷理科17)(本小题满分13分)已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。(1)求椭圆C的方程;(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。【命题意图】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。【解析】(1)依题意,可设椭圆C的方程为,且可知左焦点为F(-2,0),从而有,解得,又,所以,故椭圆C的方程为。(2)假设存在符合题意的直线,其方
14、程为,由得,因为直线与椭圆有公共点,所以有,解得,另一方面,由直线OA与的距离4可得:,从而,由于,所以符合题意的直线不存在。3 .(2010年高考天津卷理科20) (本小题满分12分)已知椭圆(0)的离心率,连接椭圆的四个顶点得到的菱形的面积为4。()求椭圆的方程:()设直线与椭圆相交于不同的两点。已知点的坐标为(-,0),点(0,)在线段的垂直平分线上,且=4。求的值。【命题意图】本小题主要考察椭圆的标准方程和几何性质,直线的方程,平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的思想,考查运算和推理能力。【解析】(1)解:由,得,再由,得由题意可知, 解方程组 得 a=2,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2010 全国各地 高考 数学 真题分 章节 分类 汇编 36
限制150内