直线与双曲线的位置关系(文)基础(共7页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《直线与双曲线的位置关系(文)基础(共7页).doc》由会员分享,可在线阅读,更多相关《直线与双曲线的位置关系(文)基础(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2.6直线与双曲线的位置关系【学习目标】1.能正熟练使用直接法、待定系数法、定义法求双曲线的方程;2.能熟练运用几何性质(如范围、对称性、顶点、离心率、渐近线)解决相关问题;3.能够把直线与双曲线的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.【知识网络】双曲线双曲线的定义与标准方程双曲线的几何性质直线与双曲线的位置关系双曲线的综合问题双曲线的弦问题双曲线离心率及渐近线问题【要点梳理】要点一、双曲线的定义及其标准方程双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离
2、叫作双曲线的焦距.双曲线的标准方程:焦点在x轴上的双曲线的标准方程说明:焦点是F1(-c,0)、F2(c,0),其中c2=a2-b2焦点在y轴上的双曲线的标准方程说明:焦点是F1(0,-c)、F2(0,c),其中c2=a2-b2要点诠释:求双曲线的标准方程应从“定形”、“定式”和“定值”三个方面去思考.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”根据“形”设双曲线方程的具体形式;“定量”是指用定义法或待定系数法确定a,b的值.要点二、双曲线的几何性质标准方程图形性质焦点,焦距范围,对称性关于x轴、y轴和原点对称顶点 轴实轴长=,虚轴长= 离心率渐近线方程要
3、点三、直线与双曲线的位置关系直线与双曲线的位置关系将直线的方程与双曲线的方程联立成方程组,消元转化为关于x或y的一元二次方程,其判别式为.若即,直线与双曲线渐近线平行,直线与双曲线相交与一点;若即,0直线和双曲线相交直线和双曲线相交,有两个交点;0直线和双曲线相切直线和双曲线相切,有一个公共点;0直线和双曲线相离直线和双曲线相离,无公共点直线与双曲线的相交弦设直线交双曲线于点两点,则=同理可得这里的求法通常使用韦达定理,需作以下变形:双曲线的中点弦问题遇到中点弦问题常用“韦达定理”或“点差法”求解.在双曲线中,以为中点的弦所在直线的斜率;涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线
4、的斜率、弦的中点坐标联系起来相互转化,同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.要点四、双曲线的实际应用与最值问题对于双曲线的实际应用问题,我们要抽象出相应的数学问题,即建立数学模型,一般要先建立直角坐标系,然后利用双曲线定义,构建参数a,b,c之间的关系,得到双曲线方程,利用方程求解双曲线中的最值问题,按照转化途径主要有以下三种:(1) 利用定义转化(2) 利用双曲线的几何性质(3) 转化为函数求最值【典型例题】类型一:双曲线的方程与性质例1.求下列双曲线的标准方程
5、(1)与椭圆共焦点,且过点(2,)的双曲线;(2)与双曲线有公共焦点,且过点(3,2)的双曲线【解析】(1)椭圆的焦点为(0,3),所求双曲线方程设为:,又点(2,)在双曲线上,解得a25或a218(舍去)所求双曲线方程为.(2)双曲线的焦点为(2,0),设所求双曲线方程为:,又点(3,2)在双曲线上,解得a212或30(舍去),所求双曲线方程为.【总结升华】根据焦点所在轴的位置合理的设出方程是求双曲线方程的基本步骤。举一反三:【变式1】(2015 安徽卷)下列双曲线中,焦点在y轴上且渐近线方程为y=2x的是( )(A) (B) (C) (D)【答案】 C【解析】由题意:选项中A,B焦点在x轴
6、,排除C项的渐近线方程为,即y2x,故选C.【变式2】(2015 上海)已知点和的横坐标相同,的纵坐标是的纵坐标的2倍,和的轨迹分别为双曲线和,若的渐近线方程为,则的渐近线方程为 .【答案】;【解析】设点和的坐标为、,则有又因为的渐近线方程为,故设的方程为,把点坐标代入,可得,令,即为曲线的渐近线方程,即。故答案为。类型二:直线与双曲线的位置关系例2已知双曲线x2y2=4,直线l:y=k(x1),讨论直线与双曲线公共点个数.【解析】联立方程组消去y,并依x聚项整理得:(1k2)x2+2k2xk24=0 (1)当1k2=0即k=1时,方程可化为2x=5,x=,方程组只有一组解,故直线与双曲线只有
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 双曲线 位置 关系 基础
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内