《平方差公式》第二课时参考教案(共8页).doc
《《平方差公式》第二课时参考教案(共8页).doc》由会员分享,可在线阅读,更多相关《《平方差公式》第二课时参考教案(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上1.7 平方差公式(二)教学目标(一)教学知识点1.了解平方差公式的几何背景.2.会用面积法推导平方差公式,并能运用公式进行简单的运算.3.体会符号运算对证明猜想的作用.(二)能力训练要求1.用符号运算证明猜想,提高解决问题的能力.2.培养学生观察、归纳、概括等能力.(三)情感与价值观要求1.在拼图游戏中对平方差公式有一个直观的几何解释,体验学习数学的乐趣.2.体验符号运算对猜想的作用,享受数学符号表示运算规律的简捷美.教学重点平方差公式的几何解释和广泛的应用.教学难点准确地运用平方差公式进行简单运算,培养基本的运算技能.教学方法启发探究相结合教具准备一块大正方形纸板
2、,剪刀.投影片四张第一张:想一想,记作(1.7.2 A)第二张:例3,记作(1.7.2 B)第三张:例4,记作(1.7.2 C)第四张:补充练习,记作(1.7.2 D)教学过程.创设问题情景,引入新课师同学们,请把自己准备好的正方形纸板拿出来,设它的边长为a.这个正方形的面积是多少?生a2.师请你用手中的剪刀从这个正方形纸板上,剪下一个边长为b的小正方形(如图123).现在我们就有了一个新的图形(如上图阴影部分),你能表示出阴影部分的面积吗?图123生剪去一个边长为b的小正方形,余下图形的面积,即阴影部分的面积为(a2b2).师你能用阴影部分的图形拼成一个长方形吗?同学们可在小组内交流讨论.(
3、教师可巡视同学们拼图的情况,了解同学们拼图的想法)生老师,我们拼出来啦.师讲给大伙听一听.生我是把剩下的图形(即上图阴影部分)先剪成两个长方形(沿上图虚线剪开),我们可以注意到,上面的大长方形宽是(ab),长是a;下面的小长方形长是(ab),宽是b.我们可以将两个长方形拼成一个更大长方形,是由于大长方形的宽和小长方形的长都是(ab),我们可以将这两个边重合,这样就拼成了一个如图124所示的图形(阴影部分),它的长和宽分别为(a+b),(ab),面积为(a+b)(ab).图124师比较上面两个图形中阴影部分的面积,你发现了什么?生这两部分面积应该是相等的,即(a+b)(ab)=a2b2.生这恰好
4、是我们上节课学过的平方差公式.生我明白了.上一节课,我们用多项式与多项式相乘的法则验证了平方差公式.今天,我们又通过拼图游戏给出平方差公式的一个几何解释,太妙了.生用拼图来验证平方差公式很直观,一剪一拼,利用面积相等就可推证.师由此我们对平方差公式有了更多的认识.这节课我们来继续学习平方差公式,也许你会发现它更“神奇”的作用.讲授新课师出示投影片(1.7.2 A)想一想:(1)计算下列各组算式,并观察它们的特点 (2)从以上的过程中,你发现了什么规律?(3)请你用字母表示这一规律,你能说明它的正确性吗?生(1)中算式算出来的结果如下 生从上面的算式可以发现,一个自然数的平方比它相邻两数的积大1
5、.师是不是大于1的所有自然数都有这个特点呢?生我猜想是.我又找了几个例子如: 师你能用字母表示这一规律吗?生设这个自然数为a,与它相邻的两个自然数为a1,a+1,则有(a+1)(a1)=a21.生这个结论是正确的,用平方差公式即可说明.生可是,我有一个疑问,a必须是一个自然数,还必须大于2吗?(同学们惊讶,然后讨论)生a可以代表任意一个数.师很好!同学们能大胆提出问题,又勇于解决问题,值得提倡.生老师,我还有个问题,这个结论反映了数字之间的一种关系.在平时有什么用途呢?(陷入沉思)生例如:计算2931很麻烦,我们就可以转化为(301)(30+1)=3021=9001=899.师的确如此.我们在
6、做一些数的运算时,如果能一直有这样“巧夺天工”的方法,太好了.我们不妨再做几个类似的练习.出示投影片(1.7.2 B)例3用平方差公式计算:(1)10397 (2)118122师我们可以发现,直接运算上面的算式很麻烦.但注意观察就会发现新的奥妙.生我发现了,103=100+3,97=1003,因此10397=(100+3)(1003)=100009=9991.太简便了!生我观察也发现了第(2)题的“奥妙”.118=1202,122=120+2118122=(1202)(120+2)=12024=144004=14396.生遇到类似这样的题,我们就不用笔算,口算就能得出.师我们再来看一个例题(出
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平方差公式 平方 公式 第二 课时 参考 教案
限制150内