2019届江西省南昌市高三二模考试数学(理)试题(解析版)(共22页).doc
《2019届江西省南昌市高三二模考试数学(理)试题(解析版)(共22页).doc》由会员分享,可在线阅读,更多相关《2019届江西省南昌市高三二模考试数学(理)试题(解析版)(共22页).doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2019届江西省南昌市高三二模考试数学(理)试题一、单选题1已知集合,则等于( )ABCD【答案】D【解析】求出集合A,然后根据数轴求出.【详解】解:因为,所以或,故集合或,又因为集合,所以=,故选D.【点睛】本题考查了集合的交集,解题的关键是审清题意,解析出集合中的元素.2已知,复数,则( )ABCD【答案】D【解析】先求出,然后再求出.【详解】解:因为复数,所以,故,故选D.【点睛】本题考查了复数模的问题,解决问题的关键对的正确理解.3已知函数,命题:,若为假命题,则实数的取值范围是( )ABCD【答案】C【解析】为假命题,即不存在,使,根据这个条件得出实数的取值
2、范围.【详解】解:因为为假命题,所以为真命题,即不存在,使,故,且解得:或,故选C.【点睛】本题考查了命题的否定,解题的关键是要将假命题转化为真命题,从而来解决问题.4已知抛物线的焦点为,点在该抛物线上,且在轴上的投影为点,则的值为( )A1B2C3D4【答案】B【解析】在轴上的投影为点,由抛物线的定义可得,故可得结果.【详解】解:因为抛物线,所以抛物线的准线方程为,因为在轴上的投影为点,所以即为点到的距离减去2,因为点在该抛物线上,故点到的距离等于,所以,故,故选B.【点睛】本题考查了抛物线的定义,解决问题的关键是要利用抛物线的定义将进行转化.5一个组合体的三视图如图所示(图中网格小正方形的
3、边长为1),则该几何体的体积是( )ABCD【答案】C【解析】根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.【详解】由几何体的三视图可得,几何体的结构是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,故此几何体的体积为圆柱的体积减去三棱柱的体积,即,故选C.【点睛】本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.6已知函数(,)的部分图像如图所示,若将图像上的所有点向左平移个单位得到函数的图像,则函数的单调递增区间是( )ABCD【答案
4、】A【解析】根据三角函数的图像得出函数解析式,然后根据平移规则得出函数的图像,从而得出函数的单调区间.【详解】解:由图可得故,解得,将点代入函数,即,因为,所以,故函数,因为将图像上的所有点向左平移个单位得到函数的图像所以,当时解得:,故当时,单调递增,故选A.【点睛】本题考查了求三角函数解析式问题、三角函数图像平移问题、三角函数单调性问题,解决问题的关键是要能由函数图像得出函数解析式,熟练运用图像平移的规则等.7已知,则实数的大小关系是( )ABCD【答案】D【解析】先解出,的值,然后再利用指数函数、幂函数的单调性判断大小关系.【详解】解:因为,所以,同理可得:,因为函数为单调增函数,且,故
5、,即,因为函数为单调增函数,且,所以,即,所以,故选D.【点睛】本题考查了利用函数单调性比较两数大小的问题,解决问题的关键是要能从两数的关系中寻找出相应的函数.8唐代诗人李颀的诗古从军行开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为,若将军从点处出发,河岸线所在直线方程为,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )ABCD【答案】A【解析】先求出点A关于直线的对称点,点到圆心的距离减去半径即
6、为最短.【详解】解:设点A关于直线的对称点,的中点为,故解得,要使从点A到军营总路程最短,即为点到军营最短的距离,“将军饮马”的最短总路程为,故选A.【点睛】本题考查了数学文化问题、点关于直线的对称问题、点与圆的位置关系等等,解决问题的关键是将实际问题转化为数学问题,建立出数学模型,从而解决问题.9已知中,点是边的中点,则等于( )A1B2C3D4【答案】B【解析】利用正弦定理求出的值,用基底表示,则可以得到的值.【详解】解:在中,由正弦定理得,即,解得,因为,所以故选B.【点睛】本题考查了正弦定理、向量分解、向量数量积等问题,解题的关键是要将目标向量转化为基向量,从而求解问题.10已知双曲线
7、:焦距为,圆:与圆:外切,且的两条渐近线恰为两圆的公切线,则的离心率为( )ABCD【答案】C【解析】两圆相外切,可得两圆心距为3,从而可得,渐近线为两圆的公切线,故可得,从而可得出关于的关系,求得离心率.【详解】解:因为圆:与圆:外切,所以即,渐近线为两圆的公切线,故可得,即,将代入到中,得,即,又因为故,解得:,故,故选C.【点睛】本题考查了双曲线的离心率问题、直线与圆相切、圆与圆相切问题,构造出的等量关系式是本题解题的关键.11已知是定义在上的函数,且对任意的都有,若角满足不等式,则的取值范围是( )ABCD【答案】A【解析】构造新函数,由可得为单调减函数,由可得为奇函数,从而解得的取值
8、范围.【详解】解:令因为,所以为R上的单调减函数,又因为,所以,即,即,所以函数为奇函数,故,即为,化简得,即,即,由单调性有,解得,故选A.【点睛】本题考查了函数性质的综合运用,解题的关键是由题意构造出新函数,研究其性质,从而解题.12平行六面体的底面是边长为4的菱形,且,点在底面的投影是的中点,且,点关于平面的对称点为,则三棱锥的体积是( )A4BCD8【答案】C【解析】建立空间直角坐标系,利用待定系数法求出点的坐标,进而求解三棱锥的体积.【详解】解:因为平行六面体的底面是边长为4的菱形,所以,因为点在底面的投影是的中点,所以,故以点为原点,以,为轴建立如图所示的空间坐标系,则,,则,设平
9、面的法向量为故即令,解得,设点则因为点关于平面的对称点为,所以,所以,即,解得:,即,又因为点到平面的距离等于点到平面的距离,所以即,解得或,当时,点与点重合,不符合题意,当时,点,显然,平面的法向量为,故点到平面的距离为,所以三棱锥的体积为,故选C.【点睛】本题考查了空间向量在立体几何中求体积的应用问题,解决本题的关键是充分运用待定系数法求解点的坐标,同时要熟练运用点到面的距离公式.二、填空题13已知,则等于_【答案】240【解析】由题意可知,不存在,可得出,再利用二项式定理求出,然后得出答案.【详解】解:因为的第项为,所以不存在,故,的系数为,所以.【点睛】本题考查了二项式定理的知识,对各
10、展开项次数的认识是本题解题的关键.14已知实数满足,则的最小值是_【答案】-2【解析】作出对应的区域,根据线性规划知识,对其进行平移,从而得到最小值.【详解】解:不等式等价于,故对应的区域如图所示,目标形式的几何意义为斜率等于2的直线,当直线平移经过点B时,取得最小值,联立方程组,解得,故.【点睛】本题考查了线性规划知识,解题的关键是正确画出不等式组对应的平面区域,对目标形式几何意义的探求也很关键.15已知,则_【答案】【解析】利用两角和差公式将展开,然后化简便可得结果.【详解】解:将化简,可得,即,即,即,利用二倍角公式可得,.【点睛】本题考查了两角和差公式、同角三角关系的运用,熟练运用公式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 江西省 南昌市 高三二模 考试 数学 试题 解析 22
限制150内