《平行线的有关证明》全章复习与巩固(提高)知识讲解(共7页).doc
《《平行线的有关证明》全章复习与巩固(提高)知识讲解(共7页).doc》由会员分享,可在线阅读,更多相关《《平行线的有关证明》全章复习与巩固(提高)知识讲解(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上平行线的有关证明全章复习与巩固(提高)知识讲解【学习目标】1 了解定义及命题的概念与构成,并能通过证明或举反例判定命题的真假;2. 区别平行线的判定与性质,并能灵活运用;3. 理解并能灵活运用三角形的内角和定理及其推论.【知识网络】【要点梳理】要点一、定义、命题及证明1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.2.命题:判断一件事情的句子,叫命题. 3.反例:要判断一个命题是假命题,只要能够举出一个例子,使之具备命题的条件,而不具有命题的结论,就可以说明这一命题是假命题,这种例子通常称为反例.要点诠释:(1)命题一般由条件和结论组成. (2)正
2、确的命题称为真命题,不正确的命题称为假命题. (3)被人们公认的真命题叫公理. (4) 经过证明的真命题叫定理.3.证明: 要判断一个命题是不是真命题,仅仅依靠经验、观察、实验和猜想是不够的,必须一步一步、有根有据地进行推理.推理的过程就是证明.要点二、平行线的判定与性质1平行线的判定判定方法1:同位角相等,两直线平行判定方法2:内错角相等,两直线平行判定方法3:同旁内角互补,两直线平行要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行
3、线的传递性).(3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直要点三、三角形的内角和定理及推论三角形的内角和定理:三角形的内角和等于180 推论:(1)三角形的一个外角等于与它不相邻的两个内角的和 (2)三角形的一个外角大于与它
4、不相邻的任何一个内角要点诠释:(1)由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论.(2)推论可以当做定理使用.【典型例题】类型一、定义、命题及证明1. 我们知道任何一个命题都由条件和结论两部分组成,如果我们把一个命题的条件变结论,结论变条件,那么所得的是不是一个命题?试举例说明.【答案与解析】解:是一个命题,例如“对顶角相等”条件结论互换就变为“相等的角是对顶角”.【总结升华】如果将一个命题的条件与结论互换,则得到这个命题的逆命题,但原命题正确,逆命题不一定正确.举一反三:【变式】下列命题中,真命题有( ) . 如果A1B1C1A2B2C2,A2B2C2A3B3C3,那么A1B1
5、C1A3B3C3; 直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离; 如果 0,那么x2; 如果a=b,那么a3b3. A.1个 B.2个 C.3个 D.4个【答案】C2.如图所示,O是直线AB上一点,射线OC、OD在AB的两侧,且AOCBOD,试证明AOC与BOD是对顶角【答案】 证明:因为AOC+COB180(平角定义), 又因为AOCBOD(已知), 所以BOD+COB180,即COD180 所以C、O、D三点在一条直线上(平角定义), 即直线AB、CD相交于点O, 所以AOC与BOD是对顶角(对顶角定义) 【总结升华】证三点共线的方法,通常采用证这三点组成的角为平角,即COD
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平行线的有关证明 平行线 有关 证明 复习 巩固 提高 知识 讲解
限制150内