二元一次方程组导学案(下)(共27页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《二元一次方程组导学案(下)(共27页).doc》由会员分享,可在线阅读,更多相关《二元一次方程组导学案(下)(共27页).doc(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上15.1二元一次方程组一、学习目标:1、认识二元一次方程和二元一次方程组;2、了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.二、教学过程1、什么是方程?什么是方程的解? 2、什么是一元一次方程?(二)自学展示探究1、例题:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?由问题知道,题中包含两个必须同时满足的条件:胜的场数负的场数总场数, 胜
2、场积分负场积分总积分.这两个条件可以用方程 , 表示.观察上面两个方程可看出,每个方程都含有 未知数(x和y),并且未知数的 都是1,像这样的方程叫做二元一次方程. 把两个方程合在一起,写成 xy22 2xy40 像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组. 1、已知方程:2x+=3;5xy-1=0;x2+y=2;3x-y+z=0;2x-y=3;x+3=5,其中是二元一次方程的有_ _(填序号即可)(三)合作交流探究2、讨论:满足方程,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.xy一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 思考
3、:上表中哪对x、y的值还满足方程x=18 既满足方程,又满足方程,也就是说它们是方程与方程的公共解。y=4 二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.2、下列各对数值中是二元一次方程x2y=2的解是( )A B C D 变式:其中是二元一次方程组解是( )(四)反馈提升1、方程(a2)x +(b-1)y = 3是二元一次方程,试求a、 b的取值范围.2、若方程是二元一次方程.求m 、n的值3、已知下列三对值: x6x10x10y9y6y1(1) 哪几对数值使方程x y6的左、右两边的值相等?xy62x31y11(2) 哪几对数值是方程组的解? 4、求二元一次方程3x2y19的正
4、整数解.15.2 消元-二元一次方程组的解法(一)一、学习目标:1会用代入法解二元一次方程组.2初步体会解二元一次方程组的基本思想“消元”.3通过研究解决问题的方法,培养合作交流意识与探究精神二、目标导学1、什么是二元一次方程?(组 ),如何解二元一次方程组?三、自学展示篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?如果只设一个末知数:胜x场,负(22x)场,列方程为: ,解得x= .在上节课中,我们可以设出两个未知数,列出二元一次方程组,设胜的场数是x,负的场数是y,xy222xy40
5、那么怎样求解二元一次方程组呢?2、思考:上面的二元一次方程组和一元一次方程有什么关系?可以发现,二元一次方程组中第1个方程xy22写成y22x,将第2个方程2xy40的y换为22x,这个方程就化为一元一次方程.消元思想: 。3、归纳:上面的解法, 叫做代入消元法,简称代入法.四、合作交流例1用代入法解方程组xy3 3x8y14 解后反思:(1)选择哪个方程代人另一方程?其目的是什么? (2)为什么能代?(3)只求出一个未知数的值,方程组解完了吗?(4)把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?(5)怎样知道你运算的结果是否正确呢?(与解一元一次方程一样,需检验其方法是将求得
6、的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等检验可以口算,也可以在草稿纸上验算)小结用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.五、反馈提升1.已知x2,y2是方程ax2y4的解,则a_.2.已知方程x2y8,用含x的式子表示y,则y =_,用含y的式子表示x,则x =_3
7、解方程组 把代入可得_4.若x、y互为相反数,且x3y4,,3x2y_.5解方程组 y =3x1 6 . 4xy=5 2x4y=24 3(x1)=2y3 7.已知是方程组的解.求、的值.15.2 消元-二元一次方程组的解法(二)一、学习目标:1、熟练地掌握用代人法解二元一次方程组;2、进一步理解代人消元法所体现出的化归意识;3、体会方程是刻画现实世界的有效数学模型 二、目标导学:1、复习旧知:解方程组2、结合你的解答,回顾用代人消元法解方程组的一般步骤三、自学展示探究例:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250 g)两种产品的销售数量比(按瓶计算)为2:5.某厂每天生产这种
8、消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?解:设这些消毒液应分装x大瓶和y小瓶,则(列出方程组为): 思考讨论:问题1:此方程与我们前面遇到的二元一次方程组有什么区别?问题2:能用代入法来解吗?问题3:选择哪个方程进行变形?消去哪个未知数?写出解方程组过程: 质疑:解这个方程组时,可以先消去X吗?试一试。反思:(1)如何用代入法处理两个未知数系数的绝对值均不为1的二元一次方程组?(2)列二元一次方程组解应用题的关键是:找出两个等量关系。 (3)列二元一次方程组解应用题的一般步骤分为:审、设、列、解、检、答四、合作交流:1、用代入法解下列方程组(1) (2)(有简单方法!)
9、五、反馈提升:1、将二元一次方程5x2y=3化成用含有x的式子表示y的形式是y= ;化成用含有y的式子表示x的形式是x= 。2、已知方程组:,指出下列方法中比较简捷的解法是( )A.利用,用含x的式子表示y,再代入;B.利用,用含y的式子表示x,再代入;C.利用,用含x的式子表示y,再代入;D.利用,用含x的式子表示x,再代人;3、用代入法解方程组: (1) (2)4、若|2x-y+1|+|x+2y-5|=0,则x=,y= 15.2 消元-二元一次方程组的解法(三)一、学习目标:1、掌握用加减法解二元一次方程组;2、理解加减消元法所体现的“化未知为已知”的化归思想方法;二、目标导学:1、复习旧
10、知解方程组 有没有其它方法来解呢?三、自学展示 2、思考:这个方程组的两个方程中,y的系数有什么关系?利用这种关系你能发现新的消元方法吗? 两个方程中未知数y的系数相同,可消去未知数y,得 - =40-22 即x=18,把x=18代入得y=4。另外,由也能消去未知数y,得 - =22-40 即-x=-18,x=18,把x=18代入得y=4.3、探究 想一想:联系上面的解法,想一想应怎样解方程组这两个方程中未知数y的系数 ,因此由可消去未知数y,从而求出未知数x的值。4、归纳:加减消元法的概念 四、合作交流 用加减法解方程组思考:用加减法消去x应如何解?解得结果与上面一样吗?五、学习小结:用加减
11、法解二元一次方程组的基本思想是什么? 这种方法的适用条件是什么?步骤又是怎样的?六、反馈提升:1用加减法解下列方程组较简便的消元方法是:将两个方程_,消去未知数_2已知方程组 ,用加减法消x的方法是_;用加减法消y的方法是_3用加减法解下列方程时,你认为先消哪个未知数较简单,填写消元的过程(1) 消元方法_(2) 消元方法_4、解方程组5、已知(3x+2y5)2与5x+3y8互为相反数,则x=_,y=_6、(选做题)15.2 消元-二元一次方程组的解法(四)一、 学习目标:1、熟练掌握加减消元法;2、能根据方程组的特点选择合适的方法解方程组。二、目标导学1、复习旧知:二元一次方程组一元一次方程
12、组消元代入、加减解二元一次方程组有哪几种方法?它们的实质是什么?三、自学展示2、选择最合适的解法解下列方程(1) (2) (3)四、合作交流探究例4 2台大收割机和5台小收割机工作2小时收割小麦36公顷,3台大收割机和2台小收割机工作5小时收割小麦8公顷,问:1台大收割机和1台小收割机1小时各收割小麦多少公顷?问题1列二元一次方程组解应用题的关键是什么? (找出两个等量关系)问题2.你能找出本题的等量关系吗? 2台大收割机2小时的工作量5台小收割机2小时的工作量=3.6 3台大收割机5小时的工作量2台小收割机5小时的工作量=8问题3.怎么表示2台大收割机2小时的工作量呢? 设1台大收割机1小时
13、收割小麦x公顷,则 2台大收割机1小时收割小麦公顷,2台大收割机2小时收割小麦公顷现在你能列出方程了吗?并解出方程。五、反馈提升:1、解方程组2、已知方程组的解是,则m=_,n=_3、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用了1700元,获纯利2400元,种西红柿每亩用了1800元,获纯利2600元,问王大伯一共获纯利多少元?4、一旅游者从下午2时步行到晚上7时,他先走平路,然后登山,到山顶后又沿原路下山回到出发点,已知他走平路时每小时走4千米,爬山时每小时走3千米,下坡时每小时走6千米,问旅游者一共走了多少路?5、(选做)若方程组的解
14、满足x+y=12,求m的值15.3实际问题与二元一次方程组(一)一、学习目标:1、会借助二元一次方程组解决简单的实际问题。2、通过应用题进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。二、目标导学1、复习旧知:列方程解应用题的步骤是什么?审题、设未知数、列方程、解方程、检验并答三、自学展示养牛场原有30只大牛和15只小牛,一天约需用饲料675 kg;一周后又购进12只大牛和5只小牛,这时一天约需用饲料940 kg.饲养员李大叔估计平均每只大牛1天约需用饲料1820 kg,每只小牛1天约需用饲料78 kg.你能否通过计算检验他的估计?问题:1) 题中有哪些已知量?哪些未知量
15、?2) 题中等量关系有哪些?3)如何解这个应用题?本题的等量关系是:四、合作交流解:设平均每只大牛和每只小牛1天各需用饲料为xkg和ykg 根据题意列方程组,得解这个方程组得每只大牛和每只小牛1天各需用饲料为和,饲料员李大叔估计每天大牛需用饲料1820千克,每只小牛一天需用7到8千克与计算有一定的出入实际问题数学问题(二元一次方程组)组)设未知数列方程组3、归纳:五、反馈提升1、班上有男女同学32人,女生人数的一半比男生总数少10人,若设男生人数为x人,女生人数为y人,则可列方程组为 2、甲乙两数的和为10,其差为2,若设甲数为x,乙数为y,则可列方程组为 3、一千零一夜中有这样一段文字:有一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二元 一次 方程组 导学案 27
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内