三角函数10道大题(共8页).doc
《三角函数10道大题(共8页).doc》由会员分享,可在线阅读,更多相关《三角函数10道大题(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上三 角 函 数1.已知函数.()求 的最小正周期;()求在区间上的最大值和最小值.2、已知函数()求函数的最小正周期;()求函数在区间上的最大值和最小值.3、已知函数()求的定义域与最小正周期;(II)设,若求的大小4、已知函数.(1)求的定义域及最小正周期;(2)求的单调递减区间.5、 设函数.(I)求函数的最小正周期;(II)设函数对任意,有,且当时, ,求函数在上的解析式.6、函数()的最大值为3, 其图像相邻两条对称轴之间的距离为,(1)求函数的解析式;(2)设,则,求的值.7、设,其中()求函数 的值域()若在区间上为增函数,求 的最大值.8、函数在一个周期
2、内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形.()求的值及函数的值域;()若,且,求的值.9、已知分别为三个内角的对边,(1)求; (2)若,的面积为;求.10、在ABC中,内角A,B,C的对边分别为a,b,c已知cosA,sinBcosC()求tanC的值; ()若a,求ABC的面积三 角 函 数答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】()因为,所以的最小正周期为.()因为,所以.于是,当,即时,取得最大值2;当,即时,取得最小值1.2、【解析】(1) 函数的最小正周期为(2) 当时,当时
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 10 道大题
限制150内