直线的一般式方程教案(共7页).doc
《直线的一般式方程教案(共7页).doc》由会员分享,可在线阅读,更多相关《直线的一般式方程教案(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上张喜林制3. 2.3 直线的一般式方程【教学目标】(1)明确直线方程一般式的形式特征;(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;(3)会把直线方程的点斜式、两点式化为一般式。【教学重难点】重点:直线方程的一般式。难点:对直线方程一般式的理解与应用。【教学过程】(一)情景导入、展示目标。1.直线方程有几种形式?指明它们的条件及应用范围.点斜式:已知直线上一点P1(x1,y1)的坐标,和直线的斜率k,则直线的方程是斜截式:已知直线的斜率k,和直线在y轴上的截距b则直线方程是两点式:已知直线上两点P1(x1,y1),P2(x2,y2)则直线的方程是:截距式:已
2、知直线在X轴Y轴上的截距为a,b,则直线的方程是2.直线的方程都可以写成关于的二元一次方程吗?反过来,二元一次方程都表示直线?提示:讨论直线的斜率是否存在。直线l经过点P0(x0,y0),斜率为k,则直线的方程为:当直线l的倾斜角为90时,直线的方程为xx00 (二)预习检查、总结疑惑任意一个二元一次方程:AxByC0(A,B不同时为0)是否表示一条直线?当B0时,上述方程可变形为:它表示过点(0,)斜率为的直线。当B0时,是一条平行于y轴的直线。由上述可知,关于x,y的二元一次方程,它表示一条直线。我们把关于x,y的二元一次方程AxByC0(A,B不同时为0)叫做直线的一般式方程,简称一般式
3、(general form)。(三)合作探究、精讲点拨。探究一:方程AxByC0中,A,B,C为何值时,方程表示直线:(1)平行于x轴;(2)平行于y轴;(3)与x轴重合;(4)与y轴重合。探究二:直线与二元一次方程具有什么样的关系?答: 直线与二元一次方程是一对多的对应,同一条直线对应的多个二元一次方程是同解方程 探究三:直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?直线的一般式方程能够表示平面上的所有直线,而点斜式、斜截式、两点式方程,都不能表示与轴垂直的直线。例1.已知直线经过点,斜率为,求直线的点斜式和一般式方程.分析:直接用点斜式写出,然后化简。解:所求的直线方程为:y
4、4(x6),化为一般式:4x3y120。点评:对刚学的知识进行检验。变式: 求经过A(3,-2)B(5,-4)的直线方程,化为一般式。例2、把直线l的一般式方程x2y60化成斜截式,求出直线l的斜率以及它在x轴与y轴上的截距,并画出图形。分析:对式子变形,考察对截距的理解。解:将直线l的一般式方程化成斜截式:yx3因此,直线的斜率为k,它在y轴上的截距为3。在直线方程x2y60中,令y0,得x6过两点可以画一条直线,就是直线l 的图形。直线与x轴、y轴的交点分别为A(6,0),B(0,3)直线在x轴上的截距为6。点评:考察对截距的理解,对式子进行变形,然后描点连续。变式:已知直线经过点(,)且
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 一般 方程 教案
限制150内