中考二次函数实际问题应用题(共20页).doc
《中考二次函数实际问题应用题(共20页).doc》由会员分享,可在线阅读,更多相关《中考二次函数实际问题应用题(共20页).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上中考二次函数实际问题应用题 1.(2012重庆市10分)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1x6,且x取整数)之间满足的函数关系如下表:7至12月,该企业自身处理的污水量y2(吨)与月份x(7x12,且x取整数)之间满足二次函数关系式为y2=ax2+c(a0)其图象如图所示1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之
2、间满足函数关系式:,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a30)%
3、,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助若该企业每月的污水处理费用为18000元,请计算出a的整数值(参考数据:15.2,20.5,28.4)【答案】解:(1)根据表格中数据可以得出xy=定值,则y1与x之间的函数关系为反比例函数关系:。将(1,12000)代入得:k=112000=12000,(1x6,且x取整数)。根据图象可以得出:图象过(7,10049),(12,10144)点,代入y2=ax2+c得:,解得:。y2=x2+10000(7x12,且x取整数)。(2)当1x6,且x取整数时: =1000x2+10000x3000=1000(x5)2+2200
4、。a=10000, 1x6,当x=5时,W最大=22000(元)。当7x12时,且x取整数时:W=2(12000y1)+1.5y2=2(12000x210000)+1.5(x2+10000)=x2+1900。a=0,对称轴为x=0,当7x12时,W随x的增大而减小,当x=7时,W最大=18975.5(元)。2200018975.5,去年5月用于污水处理的费用最多,最多费用是22000元。(3)由题意得:12000(1+a%)1.51+(a30)%(150%)=18000,设t=a%,整理得:10t2+17t13=0,解得:。28.4,t10.57,t22.27(舍去)。a57。答:a整数值是5
5、7。【考点】二次函数的应用,待定系数法,曲线上点的坐标与方程的关系,二次函数的性质,解一元二次方程。【分析】(1)利用表格中数据可以得出xy=定值,则y1与x之间的函数关系为反比例函数关系,求出即可。再利用函数图象得出:图象过(7,10049),(12,10144)点,求出二次函数解析式即可。(2)利用当1x6时,以及当7x12时,分别求出处理污水的费用,即可得出答案。(3)利用今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a一30)%,得出等式12000(1+a%)1.51+(a-30)%(1-50%)=18000,进而求出即可。 2.(
6、2012浙江嘉兴、舟山12分)某汽车租赁公司拥有20辆汽车据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元设公司每日租出工辆车时,日收益为y元(日收益=日租金收入一平均每日各项支出) (1)公司每日租出x辆车时,每辆车的日租金为 元(用含x的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司的日收益不盈也不亏? 3.(2012浙江台州12分)某汽车在刹车后行驶的距离s(单位:米)与时间t(单位:秒)之间的关系得部分数据如下表:时间t(秒)00.2
7、0.40.60.81.01.2行驶距离s(米)02.85.27.28.81010.8 (1)根据这些数据在给出的坐标系中画出相应的点; (2)选择适当的函数表示s与t之间的关系,求出相应的函数解析式; (3)刹车后汽车行驶了多长距离才停止?当t分别为t1,t2(t1t2)时,对应s的值分别为s1,s2,请比较与的大小,并解释比较结果的实际意义【答案】解:(1)描点图所示: (2)由散点图可知该函数为二次函数。设二次函数的解析式为:s=at2btc,抛物线经过点(0,0),c=0。又由点(0.2,2.8),(1,10)可得:,解得:。经检验,其余各点均在s=5t2+15t上。二次函数的解析式为:
8、。(3)汽车刹车后到停止时的距离即汽车滑行的最大距离。 ,当t=时,滑行距离最大,为。因此,刹车后汽车行驶了米才停止。 ,。t1t2,。 其实际意义是刹车后到t2时间内的平均速到t1时间内的度小于刹车后平均速度。【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,二次函数的性质和应用,不等式的应用。【分析】(1)描点作图即可。(2)首先判断函数为二次函数。用待定系数法,由所给的任意三点即可求出函数解析式。(3)将函数解析式表示成顶点式(或用公式求),即可求得答案。(4)求出与,用差值法比较大小。 4.(2012江苏常州7分)某商场购进一批L型服装(数量足够多),进价为40元/件,以
9、60元/件销售,每天销售20件。根据市场调研,若每件每降1元,则每天销售数量比原来多3件。现商场决定对L型服装开展降价促销活动,每件降价x元(x为正整数)。在促销期间,商场要想每天获得最大销售利润,每件降价多少元?每天最大销售毛利润为多少?(注:每件服装销售毛利润指每件服装的销售价与进货价的差)【答案】解:根据题意,商场每天的销售毛利润Z=(6040x)(203x)=3x240x+400 当时,函数Z取得最大值。x为正整数,且, 当x=7时,商场每天的销售毛利润最大,最大销售毛利润为372407+400=533。 答:商场要想每天获得最大销售利润,每件降价7元,每天最大销售毛利润为533元。【
10、考点】二次函数的应用,二次函数的最值。【分析】求出二次函数的最值,找出x最接近最值点的整数值即可。 5.(2012湖北黄冈12分)某科技开发公司研制出一种新型产品,每件产品的成本为2400 元,销售单价定为3000 元在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10 件时,每件按3000 元销售;若一次购买该种产品超过10 件时,每多购买一件,所购买的全部产品的销售单价均降低10 元,但销售单价均不低于2600 元(1)商家一次购买这种产品多少件时,销售单价恰好为2600 元?(2)设商家一次购买这种产品x 件,开发公司所获的利润为y 元,求y(
11、元)与x(件)之间的函数关系式,并写出自变量x 的取值范围(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)【答案】解:(1)设件数为x,依题意,得300010(x10)=2600,解得x=50。答:商家一次购买这种产品50件时,销售单价恰好为2600元。(2)当0x10时,y=(30002400)x=600x;当10x50时,y=300010(x10)2400x,即y=10x2+700x;当x50时,y=(26
12、002400)x=200x。(3)由y=10x2+700x可知抛物线开口向下,当时,利润y有最大值,此时,销售单价为300010(x10)=2750元, 答:公司应将最低销售单价调整为2750元。【考点】二次函数的应用。【分析】(1)设件数为x,则销售单价为3000-10(x-10)元,根据销售单价恰好为2600元,列方程求解。(2)由利润y=销售单价件数,及销售单价均不低于2600元,按0x10,10x50,x50三种情况列出函数关系式。(3)由(2)的函数关系式,利用二次函数的性质求利润的最大值,并求出最大值时x的值,确定销售单价。 6.(2012四川巴中9分)某商品的进价为每件50元,售
13、价为每件60元,每个月可卖出200件。如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元)。设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元, (1)求y与x的函数关系式,并直接写出x的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?【答案】解:(1)设每件商品的售价上涨x元(x为正整数),则每件商品的利润为:(6050x)元,总销量为:(200-10x)件,商品利润为:y=(6050x)(20010x)=10x2100x2000。原售价为每件60元,每件售价不能高于72元,0x12。(2)y=10x2100x2000=1
14、0(x5)2+2250,当x=5时,最大月利润y=2250。 答:每件商品的售价定为5元时,每个月可获得最大利润,最大月利润是2250元。【考点】二次函数的应用,二次函数的最值。【分析】(1)根据题意,得出每件商品的利润以及商品总的销量,即可得出y与x的函数关系式。(2)根据题意利用配方法得出二次函数的顶点形式(或用公式法),从而得出当x=5时得出y的最大值。 7.(2012辽宁锦州10分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元. 设每件玩具的销售单价上涨了
15、x元时(x为正整数),月销售利润为y元. (1)求y与x的函数关系式并直接写出自变量x的取值范围. (2)每件玩具的售价定为多少元时,月销售利润恰为2520元? (3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?【答案】解:(1)依题意得自变量x的取值范围是:0x10且x为正整数。(2)当y=2520时,得,解得x1=2,x2=11(不合题意,舍去)。 当x=2时,30+x=32。 每件玩具的售价定为32元时,月销售利润恰为2520元。 (3) a=-100 当x=6.5时,y有最大值为2722.5 。 0x10且x为正整数,当x=6时,30+x=36,y=2720, 当
16、x=7时,30+x=37,y=2720。每件玩具的售价定为36元或37元时,每个月可获得最大利润。最大的月利润是2720元。【考点】二次函数的应用,二次函数的最值,解一元二次方程。【分析】(1)根据销售利润=销售量销售单价即可得y与x的函数关系式。因为x为正整数,所以x0;因为每件玩具售价不能高于40元,所以x4030=10。故自变量x的取值范围是:0x10且x为正整数。 (2)求出函数值等于2520时自变量x的值即可。(3) 将函数式化为顶点式即可求。 8.(2012贵州省毕节市,25,12分)某商品的进价为每件20元,售价为每件30,每个月可买出180件;如果每件商品的售价每上涨1元,则每
17、个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨元(为整数),每个月的销售利润为的取值范围为元。(1)求与的函数关系式,并直接写出自变量的取值范围;(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少? (3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?解析:(1)销售利润=每件商品的利润(180-10上涨的钱数),根据每件售价不能高于35元,可得自变量的取值;(2)利用公式法结合(1)得到的函数解析式可得二次函数的最值,结合实际意义,求得整数解即可;(3)让(1)中的y=1920求得合适的x的解即可解答:解:(1)y=(30-20+x)(18
18、0-10x)=-10x2+80x+1800(0x5,且x为整数);(2)当x=时,y最大=1960元;每件商品的售价为34元答:每件商品的售价为34元时,商品的利润最大,为1960元;(3)1920=-10x2+80x+1800 , x2-8x+12=0, 即 (x-2)(x-6)=0,解得x=2或x=6, 0x5, x=2,售价为32元时,利润为1920元点评:考查二次函数的应用;得到月销售量是解决本题的突破点;注意结合自变量的取值求得相应的售价 9.(2012山西,24,10分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现
19、,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答: (1)每千克核桃应降价多少元? (2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【解析】(1)解:设每千克核桃应降价x元 1分 根据题意,得 (60x40)(100+20)=2240 4分 化简,得 x210x+24=0 解得x1=4,x2=66分答:每千克核桃应降价4元或6元 7分(2)解:由(1)可知每千克核桃可降价4元或6元 因为要尽可能让利于顾客,所以每千克核桃应降价6元 8分 此时,售价为:606=54(元), 9分答:该店应按原售价
20、的九折出售 10分【答案】(1)每千克核桃应降价4元或6元 (2)该店应按原售价的九折出售 【点评】本题主要考查了一元二次方程的应用,利用实际生活问题构建出数学模型,考生解决此类问题的关键是充分挖掘出题目中的等量关系,然后将实际问题转化为数学问题,从而解决实际问题难度中等 10.(2012年常州市)某商场购进一批L型服装(数量足够多),进价为40元/件,以60元/件销售,每天销售20件。根据市场调研,若每件每降1元,则每天销售数量比原来多3件。现商场决定对L型服装开展降价促销活动,每件降价x元(x为正整数)。在促销期间,商场要想每天获得最大销售利润,每件降价多少元?每天最大销售毛利润为多少?(
21、注:每件服装销售毛利润指每件服装的销售价与进货价的差)【答案】解:根据题意,商场每天的销售毛利润Z=(6040x)(203x)=3x240x+400 当时,函数Z取得最大值。x为正整数,且, 当x=7时,商场每天的销售毛利润最大,最大销售毛利润为372407+400=533。答:商场要想每天获得最大销售利润,每件降价7元,每天最大销售毛利润为533元。 11.(2012河北省24,9分)某工厂生产一种合金薄板(其厚度忽略不计)这些薄板的形状均为正方形,边长(单位:cm)在550之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部
22、分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据,薄板的边长(cm)2030出厂价(元/张)5070(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长为40cm的薄板,获得利润是26元(利润=出厂价-成本价)。求一张薄板的利润与边长这之间满足的函数关系式。当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?参考公式:抛物线的顶点坐标是。【解析】(1)根据每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,设出出厂价的表达式(为一次函数)再根据表格中的数据,求出解析式。(2)根据利润=出厂价-成本价,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 二次 函数 实际问题 应用题 20
限制150内