中考数学抛物线难题解析(共10页).doc
《中考数学抛物线难题解析(共10页).doc》由会员分享,可在线阅读,更多相关《中考数学抛物线难题解析(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上如图,在平面直角坐标系中,ABC是直角三角形,ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D(1)求b,c的值;(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件下:求以点E、B、F、D为顶点的四边形的面积;在抛物线上是否存在一点P,使EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点(1)求抛物线
2、的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,AMB的面积为S、求S关于m的函数关系式,并求出S的最大值(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标(4)补充:在(3)的条件下,点P、Q、B、O为顶点的四边形能否成为梯形,若能,求出相应Q的坐标。41直角坐标系XOY中,将直线y=kx沿y轴下移3个单位长度后恰好经点B(-3,0)及y 轴上的C点。若抛物y=-x2+bx+c与x轴交于A点B点,(点A在点B的右侧),且过点C 。(1)求直线BC及抛物线解析式(2)设抛物线的
3、顶点为D,点P在抛物线的对称轴上,且APD=ACB,求p点坐标如图,已知抛物线y=x2+bx+c与x轴交于A,B两点(A点在B点左侧),与y轴交于点C(0, -3),对称轴是直线x=1,直线BC交抛物线对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式; (3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P,Q两点,且点P在第三象限.当线段PQ=3AB/4时,求tanCED的值;当以点C,D,E为顶点的三角形是直角三角形时,请直接写出点P的坐标.温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答. 第25题图 第25题备用图直角坐标系XOY中
4、,半径25的C与x轴交于A(-1,0),B(3,0)且点C在X轴上方。(1) 求圆心C的坐标。(Xc=1, c(1,4))(2) 已知一个二次函数的图像过A、B、C三点。求解析式. (y=-(x+1)(x-3)(3) 设点P在y轴上,点M在(2)的二次函数图像上,如果以点P、M、A、B为顶点的四边形是平行四边形,直接写出点M坐标。26.如图,在平面直角坐标系中,ABC是直角三角形,ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D(1)求b,c的值;(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F
5、,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件下:求以点E、B、F、D为顶点的四边形的面积;在抛物线上是否存在一点P,使EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由分析:(1)由ACB=90,AC=BC,OA=1,OC=4,可得A(1,0)B(4,5),然后利用待定系数法即可求得b,c的值;(2)由直线AB经过点A(1,0),B(4,5),即可求得直线AB的解析式,又由二次函数y=x22x3,设点E(t,t+1),则可得点F的坐标,则可求得EF的最大值,求得点E的坐标;(3)顺次连接点E、B、F、D得四边形EBFD,可求出点F的坐标(,),点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 抛物线 难题 解析 10
限制150内