二次函数的图像与性质知识点及练习(共8页).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《二次函数的图像与性质知识点及练习(共8页).docx》由会员分享,可在线阅读,更多相关《二次函数的图像与性质知识点及练习(共8页).docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第二节 二次函数的图像与性质1能够利用描点法做出函数yax2,y=a(x-h)2,ya(x-h)2+k和图象,能根据图象认识和理解二次函数的性质;2理解二次函数中a、b、c对函数图象的影响。一、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.例1. 在同一平面坐标系中分别画出二次函数yx2
2、,y-x2 ,y2x2 ,y-2x2 ,y2(x-1)2 的图像。xyO一、二次函数的基本形式1. yax2的性质:的符号开口方向顶点坐标对称轴性质(增减性)向上(0,0)轴时,随的增大而增大;时,随的增大而减小;时,有最小值向下(0,0)轴时,随的增大而减小;时,随的增大而增大;时,有最大值2. yax2k的性质: (k上加下减)的符号开口方向顶点坐标对称轴性质(增减性)向上(0,k)y轴时,随的增大而增大;时,随的增大而减小;时,有最小值k向下(0,k)轴时,随的增大而减小;时,随的增大而增大;时,有最大值k3. ya(x-h)2的性质: (h左加右减)的符号开口方向顶点坐标对称轴性质(增
3、减性)向上(h,0)直线x=h时,随的增大而增大;时,随的增大而减小;时,有最小值向下(h,0)直线x=h时,随的增大而减小;时,随的增大而增大;时,有最大值4. ya (xh)2k的性质:的符号开口方向顶点坐标对称轴性质(增减性)向上(h,k)直线x=h时,随的增大而增大;时,随的增大而减小;时,有最小值向下(h,k)直线x=h时,随的增大而减小;时,随的增大而增大;时,有最大值5. yax2+bx+c的性质:的符号开口方向顶点坐标对称轴性质(增减性)向上直线时,随的增大而增大;时,随的增大而减小;时,有最小值向下直线时,随的增大而减小;时,随的增大而增大;时,有最大值二、二次函数图象的平移
4、 1. 平移步骤:方法一: 将抛物线解析式转化成顶点式,确定其顶点坐标; 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“值正右移,负左移;值正上移,负下移”概括成八个字“左加右减,上加下减” 方法二:沿轴平移:向上(下)平移个单位,变成(或)沿x轴平移:向左(右)平移个单位,变成(或)四、二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中六、二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 2.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 图像 性质 知识点 练习
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内