二次函数与实际问题(共12页).docx
《二次函数与实际问题(共12页).docx》由会员分享,可在线阅读,更多相关《二次函数与实际问题(共12页).docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上实际问题与二次函数一、利用函数求图形面积的最值问题一、 围成图形面积的最值1、 只围二边的矩形的面积最值问题例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。(1) 设矩形的一边长为 米),面积为y(平方米),求y关于x的函数关系式;(2) 当x为何值时,所围成的苗圃面积最大?最大面积是多少?解:(1)设矩形的长为x(米),则宽为(18- x)(米), 根据题意,得:;又(2)中,a= -10,y有最大值,即当时,故当x=9米时,苗圃的面积最大,最大面积为81平方米。2、 只围三边的矩形的面积最值例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡
2、场的一面靠墙。问如何围,才能使养鸡场的面积最大?解:设养鸡场的长为x(米),面积为y(平方米),则宽为()(米), 根据题意,得:;又中,a=0,y有最大值,即当时,故当x=25米时,养鸡场的面积最大,养鸡场最大面积为平方米。3、 围成正方形的面积最值例3、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形 (1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少? (2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由(1)解:设剪成两段后其中一段为xcm,则另一段为(20-x)cm 由题意得: 解
3、得: 当时,20-x=4;当时,20-x=16答:这段铁丝剪成两段后的长度分别是16厘米、4厘米。(2)不能 理由是:设第一个正方形的边长为xcm,则第二个正方形的边长为cm,围成两个正方形的面积为ycm2,根据题意,得:,中,a= 20,y有最小值,即当时, =12.512,故两个正方形面积的和不可能是1 2cm2.练习1、如图,正方形EFGH的顶点在边长为a的正方形ABCD的边上,若AE=x,正方形EFGH的面积为y.(1)求出y与x之间的函数关系式;(2)正方形EFGH有没有最大面积?若有,试确定E点位置;若没有,说明理由.答 (1)y=2x2-2ax+a2 (2) 有.当点E是AB的中
4、点时,面积最大.二、利用二次函数解决抛物线形建筑物问题例题1 如图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m如图(2)建立平面直角坐标系,则抛物线的关系式是 .练习 1某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上 ,抛物线形状如图(1)所示.图(2)建立直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系是.请回答下列问题:(1)柱子OA的高度是多少米?(2)喷出的水流距水平面的最大高度是多少
5、米?(3)若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外? 答 (1) (2) (3) 2一座桥如图,桥下水面宽度AB是20米,高CD是4米.要使高为3米的船通过,则其宽度须不超过多少米.(1)如图1,若把桥看做是抛物线的一部分,建立如图坐标系.求抛物线的解析式;要使高为3米的船通过,则其宽度须不超过多少米?(2)如图2,若把桥看做是圆的一部分.求圆的半径;要使高为3米的船通过,则其宽度须不超过多少米? 答 (1);10; (2)14.5;三、利用抛物线解决最大利润问题例题1 某市政府大力扶持大学生创业李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯销售过程中发现
6、,每月销售量y(件)与销售单价x(元)之间的关系可近似的看做一次函数:y10x500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(6分)(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3分)(3)物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本进价销售量) (3分)答案:(1)35;(2)30或40;(3)3600.练习 1某玩具批发商销售每只进价为40元的玩具,市场调查发现,若以每只50元的价格销售,平均每天销售90只,单价每提高1元,平均每
7、天就少销售3只(1)平均每天的销售量y(只)与销售价x(元只)之间的函数关系式为 ;(2)求该批发商平均每天的销售利润W(元)与销售只x(元只)之间的函数关系式;(3)物价部门规定每只售价不得高于55元,当每只玩具的销售价为多少元时,可以获得最大利润?最大利润是多少元 答(1)y=-3x+240;(2)w=-3x2+360x-9600;(3)定价为55元时,可以获得最大利润是1125元.2,一系列“三农”优惠政策,使农民收入大幅度增加某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:. 设这种产品每天的销售
8、利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元? 答(1);(2)该产品销售价定为每千克30元时,每天销售利润最大,最大 销售利润200元3某公司营销两种产品,根据市场调研,发现如下信息:信息1:销售种产品所获利润(万元)与所售产品(吨)之间存在二次函数关系.当时, ;当时,信息2:销售种产品所获利润 (万元)与所售产品(吨)之间存在正比例函数关系根据以上信息,解答下列问题:(1)求二次函数解析式;(2)该公司准备购进两种产品共10吨,请设计一个营销方案,使销售两种产品获得的利润之和最大,最大利润是多少?答 二次函数解析式
9、为y=-0.1x2+1.5x; (2)设购进A产品m吨,购进B产品(10-m)吨,销售A、B两种产品获得的利润之和为W元,则W=-0.1m2+1.5m+0.3(10-m)=-0.1m2+1.2m+3=-0.1(m-6)2+6.6,-0.10,当m=6时,W有最大值6.6, 购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元 4为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担李明按照相关政策投资销售本市生产的一种新型节能灯已知这种节能灯的成本价为每件10元,出厂价
10、为每件12元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元? 答 (1)政府这个月为他承担的总差价为600元;(2)当销售单价定为30元时,每月可获得最大利润4000;(3)销售单价定为25元时,政府每个月为他承担的总差价最少为500元.5某文具店销售一种进价为10元/个的签字笔,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 实际问题 12
限制150内