人教版高中数学【必修二】[知识点整理及重点题型梳理]-空间几何体的结构-提高(共11页).doc
《人教版高中数学【必修二】[知识点整理及重点题型梳理]-空间几何体的结构-提高(共11页).doc》由会员分享,可在线阅读,更多相关《人教版高中数学【必修二】[知识点整理及重点题型梳理]-空间几何体的结构-提高(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上人教版高中数学必修二知识点梳理重点题型(常考知识点)巩固练习空间几何体的结构【学习目标】1利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球的结构特征;2认识由柱、锥、台、球组成的几何组合体的结构特征;3能用上述结构特征描绘现实生活中简单物体的结构【要点梳理】【空间几何体的结构 棱柱的结构特征】要点一:棱柱的结构特征1、定义:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱在棱柱中,两个相互平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱侧面与底的公共顶
2、点叫做棱柱的顶点棱柱中不在同一平面上的两个顶点的连线叫做棱柱的对角线过不相邻的两条侧棱所形成的面叫做棱柱的对角面2、棱柱的分类:底面是三角形、四边形、五边形、的棱柱分别叫做三棱柱、四棱柱、五棱柱3、棱柱的表示方法:用表示底面的各顶点的字母表示棱柱,如下图,四棱柱、五棱柱、六棱柱可分别表示为、;用棱柱的对角线表示棱柱,如上图,四棱柱可以表示为棱柱或棱柱等;五棱柱可表示为棱柱、棱柱等;六棱柱可表示为棱柱、棱柱、棱柱等4、棱柱的性质:棱柱的侧棱相互平行.要点诠释:有两个面互相平行,其余各个面都是平行四边形,这些面围成的几何体不一定是棱柱如下图所示的几何体满足“有两个面互相平行,其余各个面都是平行四边
3、形”这一条件,但它不是棱柱判定一个几何体是否是棱柱时,除了看它是否满足:“有两个面互相平行,其余各个面都是平行四边形”这两个条件外,还要看其余平行四边形中“每两个相邻的四边形的公共边都互相平行”即“侧棱互相平行”这一条件,不具备这一条件的几何体不是棱柱【空间几何体的结构 棱锥的结构特征】要点二:棱锥的结构特征1、定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥这个多边形面叫做棱锥的底面有公共顶点的各个三角形叫做棱锥的侧面各侧面的公共顶点叫做棱锥的顶点相邻侧面的公共边叫做棱锥的侧棱;2、棱锥的分类:按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥 ;SS
4、DDCCBBAAECBAS3、棱锥的表示方法:用表示顶点和底面的字母表示,如四棱锥要点诠释:棱锥有两个本质特征:(1)有一个面是多边形;(2)其余各面是有一个公共顶点的三角形,二者缺一不可【空间几何体的结构 旋转体的结构特征】要点三:圆柱的结构特征1、定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱旋转轴叫做圆柱的轴垂直于轴的边旋转而成的曲面叫做圆柱的底面平行于轴的边旋转而成的曲面叫做圆柱的侧面无论旋转到什么位置不垂直于轴的边都叫做圆柱的母线2、圆柱的表示方法:用表示它的轴的字母表示,如圆柱要点诠释:(1)用一个平行于圆柱底面的平面截圆柱,截面是一个与底面全等的
5、圆面(2)经过圆柱的轴的截面是一个矩形,其两条邻边分别是圆柱的母线和底面直径,经过圆柱的轴的截面通常叫做轴截面(3)圆柱的任何一条母线都平行于圆柱的轴要点四:圆锥的结构特征1、定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥旋转轴叫做圆锥的轴垂直于轴的边旋转而成的曲面叫做圆锥的底面不垂直于轴的边旋转而成的曲面叫做圆锥的侧面无论旋转到什么位置不垂直于轴的边都叫做圆锥的母线2、圆锥的表示方法:用表示它的轴的字母表示,如圆锥要点诠释:(1)用一个平行于圆锥底面的平面去截圆锥,截面是一个比底面小的圆面(2)经过圆锥的轴的截面是一个等腰三角形,其底边是圆锥底面的直
6、径,两腰是圆锥侧面的两条母线(3)圆锥底面圆周上任意一点与圆锥顶点的连线都是圆锥侧面的母线【空间几何体的结构 棱台的结构特征】要点五:棱台和圆台的结构特征、定义:用一个平行于棱锥(圆锥)底面的平面去截棱锥(圆锥),底面和截面之间的部分叫做棱台(圆台);原棱锥(圆锥)的底面和截面分别叫做棱台(圆台)的下底面和上底面;原棱锥(圆锥)的侧面被截去后剩余的曲面叫做棱台(圆台)的侧面;原棱锥的侧棱被平面截去后剩余的部分叫做棱台的侧棱;原圆锥的母线被平面截去后剩余的部分叫做圆台的母线;棱台的侧面与底面的公共顶点叫做棱台的顶点;圆台可以看做由直角梯形绕直角边旋转而成,因此旋转的轴叫做圆台的轴.2、棱台的表示
7、方法:用各顶点表示,如四棱台;3、圆台的表示方法:用表示轴的字母表示,如圆台;要点诠释:(1)棱台必须是由棱锥用平行于底面的平面截得的几何体所以,棱台可还原为棱锥,即延长棱台的所有侧棱,它们必相交于同一点(2)棱台的上、下底面是相似的多边形,它们的面积之比等于截去的小棱锥的高与原棱锥的高之比的平方(3)圆台可以看做由圆锥截得,也可以看做是由直角梯形绕其直角边旋转而成.(4)圆台的上、下底面的面积比等于截去的小圆锥的高与原圆锥的高之比的平方要点六:球的结构特征1、定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球.半圆的半径叫做球的半径.半圆的圆心叫做球心.半圆的直径
8、叫做球的直径.2、球的表示方法:用表示球心的字母表示,如球O.要点诠释:(1)用一个平面去截一个球,截面是一个圆面如果截面经过球心,则截面圆的半径等于球的半径;如果截面不经过球心,则截面圆的半径小于球的半径(2)若半径为的球的一个截面圆半径为,球心与截面圆的圆心的距离为,则有要点七:特殊的棱柱、棱锥、棱台特殊的棱柱:侧棱不垂直于底面的棱柱称为斜棱柱;垂直于底面的棱柱称为直棱柱;底面是正多边形的直棱柱是正棱柱;底面是矩形的直棱柱叫做长方体;棱长都相等的长方体叫做正方体;特殊的棱锥:如果棱锥的底面是正多边形,且各侧面是全等的等腰三角形,那么这样的棱锥称为正棱锥;侧棱长等于底面边长的正三棱锥又称为正
9、四面体;特殊的棱台:由正棱锥截得的棱台叫做正棱台;注:简单几何体的分类如下表:要点八:简单组合体的结构特征1、组合体的基本形式:由简单几何体拼接而成的简单组合体;由简单几何体截去或挖去一部分而成的几何体;2、常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合. 多面体与多面体的组合体 由两个或两个以上的多面体组成的几何体称为多面体与多面体的组合体如下图(1)是一个四棱柱与一个三棱柱的组合体;如图(2)是一个四棱柱与一个四棱锥的组合体;如图(3)是一个三棱柱与一个三棱台的组合体 多面体与旋转体的组合体 由一个多面体与一个旋转体组合而成的几何体称为多面体与旋转体的
10、组合体如图(1)是一个三棱柱与一个圆柱组合而成的;如图(2)是一个圆锥与一个四棱柱组合而成的;而图(3)是一个球与一个三棱锥组合而成的 旋转体与旋转体的组合体 由两个或两个以上的旋转体组合而成的几何体称为旋转体与旋转体的组合体如图(1)是由一个球体和一个圆柱体组合而成的;如图(2)是由一个圆台和两个圆柱组合而成的;如图(3)是由一个圆台、一个圆柱和一个圆锥组合而成的 要点九:几何体中的计算问题几何体的有关计算中要注意下列方法与技巧:(1)在正棱锥中,要掌握正棱锥的高、侧面、等腰三角形中的斜高及高与侧棱所构成的两个直角三角形,有关证明及运算往往与两者相关(2)正四棱台中要掌握其对角面与侧面两个等
11、腰梯形中关于上、下底及梯形高的计算,有关问题往往要转化到这两个等腰梯形中另外要能够将正四棱台、正三棱台中的高与其斜高、侧棱在合适的平面图形中联系起来(3)研究圆柱、圆锥、圆台等问题的主要方法是研究它们的轴截面,这是因为在轴截面中,易找到所需有关元素之间的位置、数量关系(4)圆柱、圆锥、圆台的侧面展开是把立体几何问题转化为平面几何问题处理的重要手段之一(5)圆台问题有时需要还原为圆锥问题来解决(6)关于球的问题中的计算,常作球的一个大圆,化“球”为“圆”,应用平面几何的有关知识解决;关于球与多面体的切接问题,要恰当地选取截面,化“空间”为平面【经典例题】类型一:简单几何体的结构特征例1判断下列说
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 必修二 知识点整理及重点题型梳理 人教版 高中数学 必修 知识点 整理 重点 题型 梳理 空间 几何体 结构 提高 11
限制150内