新课标人教A版高中数学选修2-2导数及其应用知识点总结(共5页).doc
《新课标人教A版高中数学选修2-2导数及其应用知识点总结(共5页).doc》由会员分享,可在线阅读,更多相关《新课标人教A版高中数学选修2-2导数及其应用知识点总结(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高中数学选修2-2导数及其应用知识点总结1函数的平均变化率为注1:其中是自变量的改变量,可正,可负,可零。注2:函数的平均变化率可以看作是物体运动的平均速度。2、导函数的概念:函数在处的瞬时变化率是,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=.3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。5、常见的函数导数和积分公式函数导函数不定积分06、常见的导数和定积分运算公式:若,均可导(可积),则有:和差的导数运算积的导数运算特别地:商的导数运算特别地:复合函数的导
2、数微积分基本定理 (其中)和差的积分运算特别地:积分的区间可加性6.用导数求函数单调区间的步骤:求函数f(x)的导数令0,解不等式,得x的范围就是递增区间.令0,解不等式,得x的范围,就是递减区间;注:求单调区间之前一定要先看原函数的定义域。7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。(2) 求函数f(x)的导数 (3)求方程=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无
3、极值8.利用导数求函数的最值的步骤:求在上的最大值与最小值的步骤如下: 求在上的极值;将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值。注:实际问题的开区间唯一极值点就是所求的最值点;9求曲边梯形的思想和步骤:分割近似代替求和取极限 (“以直代曲”的思想)10.定积分的性质根据定积分的定义,不难得出定积分的如下性质:性质1 性质5 若,则推广: 推广:11定积分的取值情况:定积分的值可能取正值,也可能取负值,还可能是0.( l )当对应的曲边梯形位于 x 轴上方时,定积分的值取正值,且等于x轴上方的图形面积;(2)当对应的曲边梯形位于 x 轴下方时,定积分的值取负值,且等于x轴上方
4、图形面积的相反数;(3) 当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0,且等于x轴上方图形的面积减去下方的图形的面积 12物理中常用的微积分知识(1)位移的导数为速度,速度的导数为加速度。(2)力的积分为功。第二章 推理与证明13.归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。14. 归纳推理的思维过程大致如图: 实验、观察概括、推广猜测一般性结论15.归纳推理的特点: 归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。由归纳推理得到的结论具有猜测的性质,结
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课 标人教 高中数学 选修 导数 及其 应用 知识点 总结
限制150内