初一升初二暑假衔接班数学教材(共37页).doc
《初一升初二暑假衔接班数学教材(共37页).doc》由会员分享,可在线阅读,更多相关《初一升初二暑假衔接班数学教材(共37页).doc(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上目 录 第一部分温故知新专题一 整式运算1 专题二 乘法公式3 专题三 平行线的性质与判定9专题四 三角形的基本性质11专题五 全等三角形14专题六 如何做几何证明题17专题七 轴对称22 第二部分提前学习专题一 勾股定理25专题二 平方根与算数平方根29专题三 立方根32专题四 平方根与立方根的应用 35专题五 实数的分类39专题六 最简二次根式及分母有理化42专题七 非负数的性质及应用46专题八 二次根式的复习49 专心-专注-专业 第一部分温故知新 专题一 整式运算1.由数字与字母 组成的代数式叫做单项式。单独一个数或字母也是单项式。单项式中的 叫做单项式的系数
2、单项式中所有字母的 叫做单项式的次数2.几个单项式的和叫做多项式多项式中 叫做这个多项式的次数3.单项式和多项式统称为 4.整式加减实质就是 后 5.同底数幂乘法法则:(m.n都是正整数);逆运算 6.幂的乘方法则: (m.n都是正整数);逆运算 7.积的乘方法则: (n为正整数);逆运算 8.同底数幂除法法则:(a0,m.n都是正整数);逆运算 9.零指数的意义:;10.负指数的意义:11.整式乘法:(1)单项式乘以单项式;(2)单项式乘以多项式;(3)多项式乘以多项式12.整式除法:(1)单项式除以单项式;(2)多项式除以单项式知识点1.单项式多项式的相关概念归纳:在准确记忆基本概念的基础
3、上,加强对概念的理解,并灵活的运用例1.下列说法正确的是( )A没有加减运算的式子叫单项式 B.的系数是 C.单项式1的次数是0 D.是二次三项式例2.如果多项式是关于x的二次二项式,求m,n的值知识点2.整式加减归纳:正确掌握去括号的法则,合并同类项的法则 例3.多项式中不含xy项,求k的值知识点3.幂的运算归纳:幂的运算一般情况下,考题的类型均以运算法则的逆运算为主,加强对幂的逆运算的练习,是解决这类题型的核心方法。例4.已知 求(1)的值 (2)的值例5.计算 (1) (2)知识点4.整式的混合运算归纳:整式的乘法法则和除法法则是整式运算的依据,注意运算时灵活运用法则。例6.先化简,再求
4、值:,其中知识点5.运用幂的法则比较大小归纳:根据幂的运算法则,可以将比较大小的题分为两种:化为同底数比较;化为同指数比较例7.比较大小 (1) (2) 1.若A是五次多项式,B是三次多项式,则A+B一定是( ) A.五次整式 B.八次多项式 C.三次多项式 D.次数不能确定2.已知,则、的大小关系是( ) AB C D3.若,则等于( ) A5 B.3 C.1 D.14.下列叙述中,正确的是( )A.单项式的系数是0,次数是3 B.a、0、22都是单项式 C.多项式是六次三项式 D.是二次二项式5.下列说法正确的是( ) A.任何一个数的0次方都是1 B. 多项式与多项式的和是多项式 C.
5、单项式与单项式的和是多项式 D.多项式至少有两项6. 下列计算: 正确的有( ) A. 2个 B. 3个 C. 4个 D. 5个7.在的积中,不想含有项,则必须为 .8.若中不含有项,则 , .9.比较大小 (1) (2) (3)10.计算(1) (2)专题二 乘法公式1.平方差公式: 平方差公式的一些变形:(1)位置变化: (2)系数变化: (3)指数变化: (4)符号变化:= (5)数字变化:98102=(1002)(100+2)=100004=9996(6)增项变化: (7)增因式变化: 2.完全平方公式:完全平方公式的一些变形:(1) 形如的计算方法 (2)完全平方公式与平方差公式的综
6、合运用 (3)幂的运算与公式的综合运用 (4)利用完全平方公式变形,求值是一个难点。已知: :,已知: :,已知:已知:(5) 运用完全平方公式简化复杂的运算 知识点1.平方差公式的应用例1.计算下列各题(1) (2) (3)9991001例2.计算(1) (2)知识点2.完全平方公式例3.计算(1) (2)例4.已知求(1) (2) 例5.已知,求xy的值知识点3.配完全平方式归纳:配完全平方式求待定系数有三种情况,求一次项系数(2个答案)求另一个平方项(1个答案)求另一个平方项的底数(2个答案)例6.已知是一个完全平方式,则的值为( ) A.2 B. C. 4 D. 知识点4.技巧性运算归
7、纳:观察规律,找突破口,准确判断是添项还是拆项,熟记常见题型例6.(1)(1+)(1)(1+)(1)(1+)(1)(1+)例7.(1)(1)(1)(1)(1)例8.(1+)(1+)(1+)(1+)(1+)(1+)例9.19901989+19881987+211.已知m+n=2,mn= 2,则m+n的值为( )A.4 B.2 C.16 D.82.若为正整数,且,则的值为( )A.833 B.2891 C.3283 D.12253.若,则等于( ) A.9 B.10 C.2 D.14.下列说法正确的是( ) A2x3的项是2x,3 Bx1和1都是整式 Cx2+2xy+y2与都是多项式 D3x2y2
8、xy+1是二次三项式5.若单项式3xmy2m与2x2n2y8的和仍是一个单项式,则m,n的值分别是( ) A1,5 B5,1 C3,4 D4,36.下列多项式中是完全平方式的是( ) A.2x2+4x4 B.16x28y2+1 C.9a212a+4D.x2y2+2xy+y27.若a=2,则a2+的值为( ) A0 B2 C4 D68.如果多项式是一个完全平方式,则m的值是( ) A.3 B.3 C.6 D.69.的个位数字为( ) A. 2 B. 4 C. 6 D. 810.下列叙述中,正确的是( )A.单项式的系数是0,次数是3 B.a、0、22都是单项式 C.多项式是六次三项式 D.是二次
9、二项式11.下列说法正确的是( ) A.任何一个数的0次方都是1 B. 多项式与多项式的和是多项式 C. 单项式与单项式的和是多项式 D.多项式至少有两项12.下列计算: 正确的有( ) A. 2个 B. 3个 C. 4个 D. 5个13. 已知,x、y是非零数,如果,则.14. .15. 乘积=_.16. 若,则= .17. 已知,则 =_ =_.18. 已知,则的值是 .19. 已知的值为 .20. 已知的值为 .21. 当= ,= 时,多项式有最小值,此时这个最小值 是 .22. 若的值是 .23. 若的值为 .24. 若有意义,则的取值范围是 .25. 若代数式的值为0,则 , .26
10、. 计算的结果为 .27. 已知的值为 .28. 多项式是一个六次四项式,则 .29. 若代数式的值是8,则代数式的值为 .30. 已知的值为 .31. 计算的结果为 .32. 已知,则= .33. 若的值为 .34. (1) (2)35.若,求yx的值36.(1)若,求 (2)已知 ,求xy的值37.计算 :38.已知,且xy,求xy的值39.已知,求的值.40.已知ab=2,bc=3,求a2+b2+c2abbcca的值专题三 平行线的性质与判定 1.平行线的判定(1)同位角相等,两直线平行(2)内错角相等,两直线平行(3)同旁内角互补,两直线平行2.平行线的性质(1)两直线平行,同位角相等
11、(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补3.余角性质: 或 的余角相等 补角性质: 或 的补角相等例1.如图,AB,CD被EF所截,且AEG=CFG,EM,FN分别平分AEG,CFG。求证:EMFN例2.如图,直线ABCD,MH,GN分别平分EMB,CNF,求证:MHNG例3.如图,已知ABCD,分别探索下列两个图中B,D,E之间的关系例2图NMHFGCEDBA例1图NMHFGCEDBA例4.已知,ABCD,ABE和CDE的平分线相交于F点,E=140,求:BFD的度数(图2)EDBCA(图1)ECDBA(例4图)EDBCAF1.已知,ABCD,DCB=70,CBF=20,E
12、FB=130,求证:EFAB图1EDCBA图2EDCBA图3EDCBA2. 如图,已知ABCD,分别探索下列三个图中B,D,E之间的关系BAFEDC3. 如图,已知ABCD,猜想下列三个图中B,D,E,F之间的关系图3EBFDCA图2FEDCBA图1FEDCBA4.如图,已知l1l2,MN分别和直线l1、l2交于点A、B,ME分别和直线l1、l2交于点C、D点P在MN上(P点与A、B、M三点不重合)(1)如果点P在A、B两点之间运动时、之间有何数量关系?请说明理由(2)如果点P在A、B两点外侧运动时、有何数量关系?(只须写出结论) 专题四 三角形的基本性质1三角形三边的关系(1)三角形任意两边
13、之和大于第三边(2)三角形任意两边之差小于第三边设a,b,c为三角形的三边,用不等式表示三边的关系 2三角形内角和定理及推论(1)定理:三角形三个内角的和等于180(2)直角三角形的两个锐角互余3.三角形的外角(1)定义:三角形的一边与另一边的延长线组成的角(2)三角形外角性质。三角形的一个外角等于和它不相邻的 三角形的外角和等于 4.三角形具有稳定性5.三角形中的三种重要线段(1)三角形的角平分线:三角形内一个内角的平分线与这个角对边相交,这个角的顶点和交点之间的线段,叫做三角形的角平分线。(2)三角形的中位线:在三角形中,连接一个顶点与它对边中点的线段,叫做三角形的中位线(3)三角形的高:
14、从三角形的一个顶点向它的对边所在直线做垂线,顶点和垂足之间的线段叫做三角形的高线注意:(1)三角形的角平分线、中线、高线都是 ;角的平分线是 (2)三角形的三条角平分线、三条中线均相交于三角形 一点:三角形的三条高线:锐角三角形在三角形 ;钝角三角形在三角形 ;直角三角形在三角形 。 知识点1.三角形三边的关系归纳:三角形三边的关系常用来判断三条已知线段能否构成三角形,确定三角形第三边的范围,以及证明线段的不等关系。三角形边长问题中,一定要注意判断三角形的存在性。例1.如果三角形的两条边长分别为23cm和10cm,第三边与其中一边的长相等,那么第三边的长为 cm例2.在ABC中,AB=AC,中
15、线BD把ABC的周长分为15和6两部分,求ABC各边的长知识点2.三角形内角与外角归纳:(1)在角的计算中,尽量转化在同一三角形内,根据内角和定理进行计算(2)三角形外角性质是非常重要的知识点,通常结合角平分线、高线及三角形内角定理来解题较为常见例3图CBDA例3. 如图,某零件中BAC=90,B,C应分别是21和32,CDA例4题B检验工人量得BDC=148,就断定此零件不合格,为什么?例4.已知ABC中,C=ABC=2A,BD是AC边上的高,求DBC的大小例5.如图,射线AD,BE,CF构成如图所示的角,求1+2+3等于多少?例5图321FCAEBD 1.已知三角形的三个内角度数比是1:5
16、:6,则最大内角的度数为( ).现有长的四根木棒,任选三根组成一个三角形,那么可以组成三角形的个数为()CDA第5题B个个个个.已知为直角三角形,若沿图中虚线剪去,第6题图则等于4.直角三角形两个锐角的平分线所构成的钝角是 度5.已知中,为中线,=则与的周长相差 6.如图,中,为边上的高,平方,求与的度数7. 已知,()图,若点是和的角平分线的交点,求与的关系()图,若点是和外角的角平分线的交点,求与的关系图()图,若点是外角和的角平分线的交点,求与的关系图图 专题五 全等三角形1.全等三角形的性质(1)全等三角形的对应边相等(2)全等三角形的对应角相等(3)全等三角形对应边上的高,中线以及对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初一 初二 暑假 衔接 数学 教材 37
限制150内