初中升高中数学衔接教材(共13页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《初中升高中数学衔接教材(共13页).doc》由会员分享,可在线阅读,更多相关《初中升高中数学衔接教材(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第一节 乘法公式、因式分解重点:和(差)的立方公式,立方和(差)公式及应用,十字相乘法,分组分解法,试根法难点:公式的灵活运用,因式分解教学过程:一、 乘法公式引入:回顾初中常用的乘法公式:平方差公式,完全平方公式,(从项的角度变化)那三数和的平方公式呢?(从指数的角度变化)看看和与差的立方公式是什么?如,能用学过的公式推导吗?(平方立方)那呢,同理可推。那能否不重复推导,直接从式看出结果?将中的b换成b即可。()这种代换的思想很常用,但要清楚什么时候才可以代换符号的记忆,和差 从代换的角度看问:能推导立方和、立方差公式吗?即( )( )由可知,立方差呢?中的b代换成
2、b得出:符号的记忆,系数的区别例1:化简法1:平方差立方差法2:立方和立方差(2)已知求证:注意观察结构特征,及整体的把握二、因式分解:将一个多项式化成几个整式的积的形式,与乘法运算是互逆变形。初中学过的方法有:提取公因式法,公式法(平方差、完全平方、立方和、立方差等)(1)十字相乘法试分解因式:要将二次三项式x2 + px + q因式分解,就需要找到两个数a、b,使它们的积等于常数项q,和等于一次项系数p, 满足这两个条件便可以进行如下因式分解,即x2 + px + q = x2 +(a + b)x + ab = (x + a)(x + b). 用十字交叉线表示: 1 a 1 b a + b
3、 (交叉相乘后相加)若二次项的系数不为1呢?,如:如何处理二次项的系数?类似分解:1 3 2 1 -6 + -1 = -7 整理:对于二次三项式ax2+bx+c(a0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2排列如下:a1 +c1 a2 +c2 a1c2 + a2c1 = a1c2 + a2c1按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即 ax2+bx+c
4、=(a1x+c1)(a2x+c2)。按行写分解后的因式十字相乘法关键:(1)看两端,凑中间;(2)分解后的因式如何写(3)二次项系数为负时,如何简化例2:因式分解:(1) (2) (3)(2)分组分解法分解,观察;无公因式,四项式,则不能用提公因式法,公式法及十字相乘法两种方法适当分组后提出公因式,各组间又出现新的公因式,叫分组分解法如何适当分组是关键(尝试,结构),分组的原则,目的是什么?分组后可以提取公因式,或;利用公式练习:因式分解(1) (2)(3) (试根法,竖式相除)归纳:如何选择适当的方法作业:将下列各式分解因式(1); (2); (3);(4)(5); (6);(7)(8);(
5、9)第二节 二次函数及其最值重点:二次函数的三种表示形式,韦达定理,给定区间的最值问题难点:给定区间的最值问题教学过程:一、 韦达定理(二次方程根与系数之间的关系)二次方程什么时候有根(判别式0时),此时由求根公式得,求出了具体的根,还反映了根与系数的关系。那可以不解方程,直接从方程中看出两根和(积)与系数的关系吗,反过来,若满足,那么一定是的两根,即韦达定理的逆定理也成立。作用:(1)已知方程,得出根与系数的关系(2)已知两数,构造出以两数为根的一元二次方程(系数为1):例1:是方程的两根,不解方程,求下列代数式的值; 二、二次函数的三种形式(1) 一般式:(2) 顶点式:,其中顶点坐标为(
6、h,k)练:求下列函数的最值。(1) (2) (3)除了上述两种表示方法外,我们还可以借助图像与x轴的交点,得出另一种表示方法;函数的图像与x轴公共点的横坐标就是方程的根,那它根的情况由谁决定 ,(判别式),当方程有两根时,由韦达定理可知,所以,这是二次函数的交点式。(3)交点式: 根据题目所给条件,适当选择三种形式。例2:分别求下列一元二次函数的解析式。(P4344)(1) 已知二次函数的图象过点(3,0),(1,0),且顶点到x轴的距离等于2;(2) 已知二次函数的对称轴为x1,最大值为15,图象与x轴有两个交点,其横坐标的立方和为17;三、二次函数在给定范围内的最值问题例3、已知函数,当
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 升高 数学 衔接 教材 13
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内