初三复习二次函数动点问题(共17页).docx
《初三复习二次函数动点问题(共17页).docx》由会员分享,可在线阅读,更多相关《初三复习二次函数动点问题(共17页).docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二次函数的动态问题(动点)1.如图,正方形的顶点的坐标分别为,顶点在第一象限点从点出发,沿正方形按逆时针方向匀速运动,同时,点从点出发,沿轴正方向以相同速度运动当点到达点时,两点同时停止运动,设运动的时间为秒(1)求正方形的边长 (2)当点在边上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分(如图所示),求两点的运动速度 (3)求(2)中面积(平方单位)与时间(秒)的函数关系式及面积取最大值时点的坐标 (4)若点保持(2)中的速度不变,则点沿着边运动时,的大小随着时间的增大而增大;沿着边运动时,的大小随着时间的增大而减小当点沿着这两边运动时,使的
2、点有个 (抛物线的顶点坐标是图图解 (1)作轴于,(2)由图可知,点从点运动到点用了10秒又两点的运动速度均为每秒1个单位(3)方法一:作轴于,则,即, 即,且,当时,有最大值此时,点的坐标为(8分)方法二:当时,设所求函数关系式为抛物线过点, ,且,当时,有最大值此时,点的坐标为 (4) 点评本题主要考查函数性质的简单运用和几何知识,是近年来较为流行的试题,解题的关键在于结合题目的要求动中取静,相信解决这种问题不会非常难。2. 如图,中,它的顶点的坐标为,顶点的坐标为,点从点出发,沿的方向匀速运动,同时点从点出发,沿轴正方向以相同速度运动,当点到达点时,两点同时停止运动,设运动的时间为秒(1
3、)求的度数(2)当点在上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分,(如图),求点的运动速度(3)求(2)中面积与时间之间的函数关系式及面积取最大值时点的坐标(4)如果点保持(2)中的速度不变,那么点沿边运动时,的大小随着时间的增大而增大;沿着边运动时,的大小随着时间的增大而减小,当点沿这两边运动时,使的点有几个?请说明理由(第29题图)ACBQDOPxy3010O5tS(第29题图)解: (1)(2)点的运动速度为2个单位/秒(3)()当时,有最大值为,此时(4)当点沿这两边运动时,的点有2个当点与点重合时,当点运动到与点重合时,的长是12单位长度,作交轴于点,作轴
4、于点,由得:,所以,从而第29题图所以当点在边上运动时,的点有1个同理当点在边上运动时,可算得而构成直角时交轴于,所以,从而的点也有1个所以当点沿这两边运动时,的点有2个3. (本题满分14分)如图,直线与轴交于点,与轴交于点,已知二次函数的图象经过点、和点.(1)求该二次函数的关系式;(2)设该二次函数的图象的顶点为,求四边形的面积;(3)有两动点、同时从点出发,其中点以每秒个单位长度的速度沿折线 按的路线运动,点以每秒个单位长度的速度沿折线按的路线运动,当、两点相遇时,它们都停止运动.设、同时从点出发秒时,的面积为S .请问、两点在运动过程中,是否存在,若存在,请求出此时的值;若不存在,请
5、说明理由;请求出S关于的函数关系式,并写出自变量的取值范围;设是中函数S的最大值,那么 = .解:(1)令,则;令则二次函数的图象过点,可设二次函数的关系式为又该函数图象过点解之,得,所求二次函数的关系式为 (2)=顶点M的坐标为 过点M作MF轴于F=四边形AOCM的面积为10 (3)不存在DEOC 若DEOC,则点D,E应分别在线段OA,CA上,此时,在中,设点E的坐标为, , 2,不满足不存在根据题意得D,E两点相遇的时间为(秒)现分情况讨论如下:)当时,;)当时,设点E的坐标为, )当2 时,设点E的坐标为,类似可得设点D的坐标为,= 47.关于的二次函数以轴为对称轴,且与轴的交点在轴上
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 复习 二次 函数 问题 17
限制150内