华师数学九年级上全册导学案(共124页).doc
《华师数学九年级上全册导学案(共124页).doc》由会员分享,可在线阅读,更多相关《华师数学九年级上全册导学案(共124页).doc(124页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上22.1 二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。2、掌握二次根式有意义的条件。3、掌握二次根式的基本性质:和二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质难点:综合运用性质和。三、学习过程(一)复习引入:(1)已知x2 = a,那么a是x的_; x是a的_, 记为_, a一定是_数。(2)4的算术平方根为2,用式子表示为 =_;正数a的算术平方根为_,0的算术平方根为_;式子的意义是 。(二)提出问题1、式子表示什么意义?2、什么叫做二次根式?3、式子的意义是什么?4、的意义是什么?5、如何确定一个二次根式有无意
2、义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?,2、计算 : (1) (2) (3) (4)根据计算结果,你能得出结论: ,其中,的意义是 。3、当a为正数时指a的 ,而0的算术平方根是 ,负数 ,只有非负数a才有算术平方根。所以,在二次根式中,字母a必须满足 , 才有意义。(三)合作探究1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 : x取何值时,下列各二次根式有意义? 2、(1)若有意义,则a的值为_(2)若在实数范围内有意义,则x为( )。A.正数 B.负数 C.非负数 D.非正数(四)展示反馈 (
3、学生归纳总结)1非负数a的算术平方根(a0)叫做二次根式.二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a必须是非负数。2式子的取值是非负数。(五)精讲点拨1、二次根式的基本性质()2=a成立的条件是a0,利用这个性质可以求二次根式的平方,如()2=5;也可以把一个非负数写成一个数的平方形式,如5=()2.2、讨论二次根式的被开方数中字母的取值,实际上是解所含字母的不等式。(五)拓展延伸1、(1)在式子中,x的取值范围是_.(2)已知+0,则x-y _.(3)已知y+,则= _。 2、由公式,我们可以得到公式a= ,利用此公式可以把任意一个非负
4、数写成一个数的平方的形式。(1)把下列非负数写成一个数的平方的形式:5 0.35(2)在实数范围内因式分解 4a-11(六)达标测试A组(一)填空题:1、 =_;2、 在实数范围内因式分解:(1)x2-9= x2 - ( )2= (x+ _)(x-_)(2) x2 - 3 = x2 - ( ) 2 = (x+ _) (x- _) (二)选择题:1、计算 ( ) A. 169B.-13C13 D.132、已知A. x-3 B. x-3 C.x=-3 D x的值不能确定3、下列计算中,不正确的是 ( )。A. 3= B 0.5= C .=0.3 D =35B组(一)选择题:1、下列各式中,正确的是
5、( )。A. = B C D2、 如果等式= x成立,那么x为( )。A x0; B.x=0 ; C.x”、“0)是二次根式,化为最简二次根式是( ) A(y0) B(y0) C(y0) D以上都不对(2)化简二次根式的结果是 A、 B、- C、 D、- 2、填空:(1)化简=_(x0)(2)已知,则的值等于_. 3、计算:(1) (2) B组 1、计算: (a0,b0)2、若x、y为实数,且y=,求的值。 22.3二次根式的加减法二次根式的加减法一、学习目标1、了解同类二次根式的定义。2、能熟练进行二次根式的加减运算。二、学习重点、难点重点:二次根式加减法的运算。难点:快速准确进行二次根式加
6、减法的运算。三、学习过程(一)复习回顾1、什么是同类项?2、如何进行整式的加减运算?3、计算:(1)2x-3x+5x (2) (二)提出问题1、什么是同类二次根式?2、判断是否同类二次根式时应注意什么?3、如何进行二次根式的加减运算?(三)自主学习自学课本第1011页内容,完成下面的题目:1、试观察下列各组式子,哪些是同类二次根式:(1) (2)(3) (4)从中你得到: 。2、自学课本例1,例2后,仿例计算:(1)+ (2)+2+3 (3)3-9+3 通过计算归纳:进行二次根式的加减法时,应 (四)合作交流,展示反馈小组交流结果后,再合作计算,看谁做的又对又快!限时6分钟(1) (2) (3
7、) (4) (五)精讲点拨1、判断是否同类二次根式时,一定要先化成最简二次根式后再判断。2、二次根式的加减分三个步骤:化成最简二次根式;找出同类二次根式;合并同类二次根式,不是同类二次根式的不能合并。(六)达标测试:A组1、选择题(1)二次根式:;中,与是同类二次根式的是( ) A和 B和 C和 D和(2)下列各组二次根式中,是同类二次根式的是( )A与 B与C与 D与2、计算: (1)(2)B组1、选择:已知最简根式是同类二次根式,则满足条件的 a,b的值( )A不存在 B有一组 C有二组 D多于二组2、计算:(1) (2)二次根式的混合运算一、学习目标熟练应用二次根式的加减乘除法法则及乘法
8、公式进行二次根式的混合运算。二、学习重点、难点重点:熟练进行二次根式的混合运算。难点:混合运算的顺序、乘法公式的综合运用。三、学习过程(一)复习回顾:1、填空 (1)整式混合运算的顺序是: 。(2)二次根式的乘除法法则是: 。(3)二次根式的加减法法则是: 。(4)写出已经学过的乘法公式: 2、计算:(1) (2)(3)(二)合作交流1、探究计算:(1)() (2)2、自学课本11页例3后,依照例题探究计算:(1) (2)(三)展示反馈计算:(限时8分钟)(1) (2)(3) (4)(-)(-)(四)精讲点拨整式的运算法则和乘法公式中的字母意义非常广泛,可以是单项式、多项式,也可以代表二次根式
9、,所以整式的运算法则和乘法公式适用于二次根式的运算。(五)达标测试:A组1、计算:(1) (2)(3)(a0,b0)(4)2、已知,求的值。B组计算:(1)(2)二次根式复习一、学习目标1、了解二次根式的定义,掌握二次根式有意义的条件和性质。2、熟练进行二次根式的乘除法运算。3、理解同类二次根式的定义,熟练进行二次根式的加减法运算。4、了解最简二次根式的定义,能运用相关性质进行化简二次根式。二、学习重点、难点重点:二次根式的计算和化简。难点:二次根式的混合运算,正确依据相关性质化简二次根式。三、复习过程(一)自主复习自学课本第13页“小结”的内容,记住相关知识,完成练习:1若a0,a的平方根可
10、表示为_a的算术平方根可表示_2当a_时,有意义,当a_时,没有意义。345(二)合作交流,展示反馈1、式子成立的条件是什么? 2、计算: (1) (2)3(1) (2) (三)精讲点拨在二次根式的计算、化简及求值等问题中,常运用以下几个式子:(1)(2)(3)(4)(5)(四)拓展延伸1、用三种方法化简解:第一种方法:直接约分第二种方法:分母有理化 第三种方法:二次根式的除法2、已知m,m为实数,满足,求6m-3n的值。(五)达标测试:A组1、选择题:(1)化简的结果是( )A 5 B -5 C 士5 D 25(2)代数式中,x的取值范围是( )A B C D (3)下列各运算,正确的是(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 九年级 上全册导学案 124
限制150内