勾股定理经典例题(共8页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《勾股定理经典例题(共8页).doc》由会员分享,可在线阅读,更多相关《勾股定理经典例题(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上勾股定理经典例题类型一:勾股定理的直接用法 1、在RtABC中,C=90 (1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a. 思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 举一反三 【变式】:如图B=ACD=90, AD=13,CD=12, BC=3,则AB的长是多少? 类型二:勾股定理的构造应用 2、如图,已知:在中,. 求:BC的长. 15020m30m1、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这
2、种草皮至少需要() A、450a元B、225a 元C、150a元 D、300a元 举一反三【变式1】如图,已知:,于P. 求证:. 【变式2】已知:如图,B=D=90,A=60,AB=4,CD=2。求:四边形ABCD的面积。 类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60方向走了到达B点,然后再沿北偏西30方向走了500m到达目的地C点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这
3、辆卡车能否通过该工厂的厂门? (二)用勾股定理求最短问题 4、如图,一圆柱体的底面周长为20cm,高为4cm,是上底面的直径一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程 类型四:利用勾股定理作长为的线段 5、作长为、的线段。 作法:如图所示 举一反三 【变式】在数轴上表示的点。 解析:可以把看作是直角三角形的斜边, 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。 作法:如图所示在数轴上找到A点,使OA=3,作ACOA且截取AC=1,以OC为半径, 以O为圆心做弧,弧与数轴的交点B即为。类型五:逆命题与勾股定理逆定理 6
4、、写出下列原命题的逆命题并判断是否正确 1原命题:猫有四只脚(正确) 2原命题:对顶角相等(正确) 3原命题:线段垂直平分线上的点,到这条线段两端距离相等(正确) 4原命题:角平分线上的点,到这个角的两边距离相等(正确) 7、如果ABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ABC的形状。 。 举一反三【变式1】四边形ABCD中,B=90,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。 【变式2】已知:ABC的三边分别为m2n2,2mn,m2+n2(m,n为正整数,且mn),判断ABC是否为直角三角形. 【变式3】如图正方形ABCD,
5、E为BC中点,F为AB上一点,且BF=AB。 请问FE与DE是否垂直?请说明。 【答案】答:DEEF。 证明:设BF=a,则BE=EC=2a, AF=3a,AB=4a, EF2=BF2+BE2=a2+4a2=5a2; DE2=CE2+CD2=4a2+16a2=20a2。 连接DF(如图) DF2=AF2+AD2=9a2+16a2=25a2。 DF2=EF2+DE2, FEDE。练习一、判断直角三角形问题:1、.满足下列条件的ABC,不是直角三角形的是A.b2=c2a2 B.abc=345 C.C=AB D.ABC=1213152、若一个三角形的三边长的平方分别为:32,42,x2则此三角形是直
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 经典 例题
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内