均值、方差、正态分布--学生用(共7页).doc
《均值、方差、正态分布--学生用(共7页).doc》由会员分享,可在线阅读,更多相关《均值、方差、正态分布--学生用(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上12.6离散型随机变量的均值与方差、正态分布1离散型随机变量的均值与方差若离散型随机变量X的分布列为Xx1x2xixnPp1p2pipn(1)均值称E(X)x1p1x2p2xipixnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平(2)方差称D(X) (xiE(X)2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根为随机变量X的标准差2均值与方差的性质(1)E(aXb)aE(X)b.(2)D(aXb)a2D(X)(a,b为常数)3两点分布与二项分布的均值、方差(1)若X服从两点分布,则E(X)_p_,D(X
2、)p(1p)(2)若XB(n,p),则E(X)_np_,D(X)np(1p)4正态分布(1)正态曲线:函数,(x)e,x(,),其中和为参数(0,R)我们称函数、(x)的图象为正态分布密度曲线,简称正态曲线(2)正态曲线的性质:曲线位于x轴上方,与x轴不相交;曲线是单峰的,它关于直线x对称;曲线在x处达到峰值;曲线与x轴之间的面积为_1_;当一定时,曲线的位置由确定,曲线随着_的变化而沿x轴平移,如图甲所示;当一定时,曲线的形状由确定,_越小_,曲线越“瘦高”,表示总体的分布越集中;_越大_,曲线越“矮胖”,表示总体的分布越分散,如图乙所示(3)正态分布的定义及表示如果对于任何实数a,b (a
3、b),随机变量X满足P(aXb),(x)dx,则称随机变量X服从正态分布,记作XN(,2)正态总体在三个特殊区间内取值的概率值P(X)0.682_6;P(2X2)0.954_4;P(3c1)P(Xc1),则c等于()A1 B2 C3 D44有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)_.5在篮球比赛中,罚球命中1次得1分,不中得0分如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X的均值是_题型一离散型随机变量的均值、方差例1(2013浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个
4、蓝球得3分袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n1,2,3,4)现从袋中任取一球,表示所取球的标号(1)求的分布列、期望和方差;(2)若ab,E()1,D()11,试求a,b的值题型二二项分布的均值、方差例2(2012四川)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和系统B在任意时刻发生故障的概率分别为和p.(1)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;(2)设系统A在3次相互独立的检测中不发生故障的次数为随机变量,求的分布列及数学期望E()假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或
5、被关闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变记每天上午第三节课上课时该教室里敞开的窗户个数为Y,求Y的数学期望题型三正态分布的应用例3在某次大型考试中,某班同学的成绩服从正态分布N(80,52),现已知该班同学中成绩在8085分的有17人试计算该班成绩在90分以上的同学有多少人在某次数学考试中,考生的成绩服从正态分布,即N(100,100),已知满分为150分(1)试求考试成绩位于区间(80,120内的概率;(2)若这次考试共有2 000名考生参加,试估计这次考试及格
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 均值 方差 正态分布 学生
限制150内