微分几何答案(第二章)(共14页).doc
《微分几何答案(第二章)(共14页).doc》由会员分享,可在线阅读,更多相关《微分几何答案(第二章)(共14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第二章 曲面论1曲面的概念1.求正螺面= u ,u , bv 的坐标曲线.解 u-曲线为=u ,u ,bv =0,0,bvu ,0,为曲线的直母线;v-曲线为=,bv 为圆柱螺线证明双曲抛物面a(u+v), b(u-v),2uv的坐标曲线就是它的直母线。证 u-曲线为= a(u+), b(u-),2u= a, b,0+ ua,b,2表示过点 a, b,0以a,b,2为方向向量的直线; v-曲线为=a(+v), b(-v),2v=a, b,0+va,-b,2表示过点(a, b,0)以a,-b,2为方向向量的直线。3求球面=上任意点的切平面和法线方程。解 = ,=任意点的
2、切平面方程为即 xcoscos + ycossin + zsin - a = 0 ;法线方程为 。4求椭圆柱面在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面 。解 椭圆柱面的参数方程为x = cos, y = asin, z = t , , 。所以切平面方程为:,即x bcos + y asin a b = 0此方程与t无关,对于的每一确定的值,确定唯一一个切平面,而的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面 。5证明曲面的切平面和三个坐标平面所构成的四面体的体积是常数。 证,。切平面方程为:。与三坐标轴的交点分别为(3u,0,0),(0,3v,0),
3、(0,0,)。于是,四面体的体积为:是常数。 曲面的第一基本形式1. 求双曲抛物面a(u+v), b(u-v),2uv的第一基本形式. 解 , I = 2。求正螺面= u ,u , bv 的第一基本形式,并证明坐标曲线互相垂直。解,I =,坐标曲线互相垂直。在第一基本形式为I =的曲面上,求方程为u = v的曲线的弧长。解 由条件,沿曲线u = v有du=dv ,将其代入得=,ds = coshvdv , 在曲线u = v上,从到的弧长为。4设曲面的第一基本形式为I = ,求它上面两条曲线u + v = 0 ,uv = 0的交角。分析 由于曲面上曲线的交角是曲线的内蕴量,即等距不变量,而求等距
4、不变量只须知道曲面的第一基本形式,不需知道曲线的方程。解 由曲面的第一基本形式知曲面的第一类基本量,曲线u + v = 0与u v = 0的交点为u = 0, v = 0,交点处的第一类基本量为,。曲线u + v = 0的方向为du = -dv , u v = 0的方向为u=v , 设两曲线的夹角为,则有cos= 。5求曲面z = axy上坐标曲线x = x ,y =的交角.解 曲面的向量表示为=x,y,axy, 坐标曲线x = x的向量表示为= x,y,axy ,其切向量=0,1,ax;坐标曲线y =的向量表示为=x , ,ax,其切向量=1,0,a,设两曲线x = x与y =的夹角为,则有
5、cos = 6. 求u-曲线和v-曲线的正交轨线的方程.解 对于u-曲线dv = 0,设其正交轨线的方向为u:v ,则有Eduu + F(duv + dvu)+ G d vv = 0,将dv =0代入并消去du得u-曲线的正交轨线的微分方程为Eu + Fv = 0 .同理可得v-曲线的正交轨线的微分方程为Fu + Gv = 0 .7. 在曲面上一点,含du ,dv的二次方程P+ 2Q dudv + R,确定两个切方向(du :dv)和(u :v),证明这两个方向垂直的充要条件是ER-2FQ + GP=0.证明因为du,dv不同时为零,假定dv0,则所给二次方程可写成为P+ 2Q+ R=0 ,设
6、其二根, 则=,+=又根据二方向垂直的条件知E + F(+)+ G = 0 将代入则得 ER - 2FQ + GP = 0 .8. 证明曲面的坐标曲线的二等分角线的微分方程为E=G.证用分别用、d表示沿u曲线,v曲线及其二等分角线的微分符号,即沿u曲线u,v,沿v曲线u,v沿二等分角轨线方向为du:dv ,根据题设条件,又交角公式得,即。uvV=1u=-avu=avo展开并化简得E(EG-)=G(EG-),而EG-0,消去EG-得坐标曲线的二等分角线的微分方程为E=G.9设曲面的第一基本形式为I = ,求曲面上三条曲线u = v, v =1相交所成的三角形的面积。解 三曲线在平面上的图形(如图
7、)所示。曲线围城的三角形的面积是S= =2=2= 。10求球面=的面积。解 = ,=E =,F= 0 , G = = .球面的面积为:S = . 11.证明螺面=ucosv,usinv,u+v和旋转曲面=tcos,tsin,(t1, 02)之间可建立等距映射 =arctgu + v , t= .分析 根据等距对应的充分条件,要证以上两曲面可建立等距映射 = arctgu + v , t=,可在一个曲面譬如在旋转曲面上作一参数变换使两曲面在对应点有相同的参数,然后证明在新的参数下,两曲面具有相同的第一基本形式.证明 螺面的第一基本形式为I=2+2 dudv+(+1), 旋转曲面的第一基本形式为I
8、= ,在旋转曲面上作一参数变换 =arctgu + v , t = , 则其第一基本形式为:=2+2 dudv+(+1)= I .所以螺面和旋转曲面之间可建立等距映射 =arctgu + v , t = .3曲面的第二基本形式1. 计算悬链面=coshucosv,coshusinv,u的第一基本形式,第二基本形式.解 =sinhucosv,sinhusinv,1,=-coshusinv,coshucosv,0=coshucosv,coshusinv,0,=-sinhusinv,sinhucosv,0,=-coshucosv,-coshusinv,0,= coshu,=0,=coshu.所以I
9、= coshu+ coshu .=,L=, M=0, N=1 . 所以II = -+ 。2. 计算抛物面在原点的第一基本形式,第二基本形式.解 曲面的向量表示为, , E = 1, F = 0 , G = 1 ,L = 5 , M = 2 , N =2 , I=, II=.3. 证明对于正螺面=u,u,bv,-u,v处处有EN-2FM+GL=0。解 ,=0,0,0,=-uucosv,cosv,0,=-ucosv,-usinv,0,, L= 0, M = , N = 0 .所以有EN - 2FM + GL= 0 .4. 求出抛物面在(0,0)点沿方向(dx:dy)的法曲率.解 ,E=1,F=0,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微分 几何 答案 第二 14
限制150内